Font Size: a A A

Shape Memory Alloy Modeling and Applications to Porous and Composite Structures

Posted on:2016-12-06Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Zhu, PingpingFull Text:PDF
GTID:1471390017976059Subject:Mechanics
Abstract/Summary:
There has been a growing concern about an exciting class of advanced material -- shape memory alloys (SMAs) since their discovery several decades ago. SMAs exhibit large reversible stresses and strains owing to a thermoelastic phase transformation. They have been widely used in many engineering fields including aerospace, biomedical, and automotive engineering, especially as sensors, actuators, bone implants and deployable switches. The behavior of SMAs is very complex due to the coupling between thermal and mechanical effects. Theoretical and computational tools are used in this dissertation to investigate the mechanical behavior of SMA and its related structures for seeking better and wider application of this material.;In the first part of this dissertation, we proposed an improved macroscopic phenomenological constitutive model of SMA that accounts for all major mechanical behaviors including elasticity, phase transformation, reorientation and plasticity. The model is based on some previous work developed in the Brinson group, and the current efforts are focused on plasticity, the application of a pre-defined strain, unification of notations, and other coding-related work. A user subroutine script VUMAT is developed to implement the constitutive model to the commercial finite element software Abaqus. Typical simulation results based on the model are presented, as well as verification with some experimental results.;In the second part, we apply the developed constitutive model to a series of two-dimensional SMA plates with structured arrays of pores to investigate the structural response, especially the stress, strain, phase transformation, and plastic fields. Results are documented about the coupling of the elastic, transformation and plastic fields about the arrays of pores. Theoretical and experimental DIC results are also utilized to validate some simulation results. Conclusions are then drawn to provide understanding in the effect of pores and the underlying mechanism of pore interactions in the SMA foams. Additionally, the influence of geometric features including the number, size and locations of pores are studied to guide the design and optimization of porous SMAs.;Thirdly, modeling and simulation are performed on a series of cracked self-healing SMA composite systems. These composites are to be applied in aeronautic structures where fatigue crack initiation and propagation is a significant safety and economic concern, based on a liquid-assisted SMA self-healing technology. We develop a modeling approach in Abaqus to create composite models with the as-is or pre-strained SMA wires. The modeling approach is validated by two simulation cases following the experiment setups. The amount of crack closure in the SMA-reinforced MMC is then focused, especially on the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. Composites with various geometric configurations of SMA are also created to study how the number, location, length and orientation of the SMA wires would affect the crack closure and self-healing behavior.;These studies, from three aspects, provide deep insights to SMA and its related applications from the modeling and simulation point of view, which can further guide the development and application of this unique material.
Keywords/Search Tags:SMA, Model, Application, Material, Simulation, Composite, Smas
Related items