Font Size: a A A

Controlling Directed Self-Assembly and Sintering of Gold Nanorods in Patterned Block Copolymer Thin Film

Posted on:2016-11-15Degree:Ph.DType:Dissertation
University:Rensselaer Polytechnic InstituteCandidate:Lai, FengyuanFull Text:PDF
GTID:1471390017980663Subject:Materials science
Abstract/Summary:
As the miniaturization of electronic devices continues, proper thermal management is crucial to ensure the optimum performance and reliability of such devices within their specification. Of primary interest are the so-called thermal interface materials to minimize the thermal resistance between the heat source and the heat sink. To this end, polymer nanocomposites composed of a polymer matrix and nanoscale fillers with high thermal conductivity have attracted tremendous attention. It has been demonstrated that the formation of a nanoparticle assembly inside the polymer matrix provides a continuous pathway for efficient heat transfer, and thus it is essential for achieving high thermal conductivity. In this work, we explored the ability to direct the self-assembly of gold nanorods (AuNRs) via patterned block copolymer (BCP) thin films. Selective sequestration of AuNRs with various aspect ratios in one block domain was achieved, with over 30% of the surface covered by an ordered AuNR assembly orienting parallel to the geometric confinement. The final nanostructure resulting from the directed self-assembly process is determined by the competition between thermodynamic consideration and kinetic factors. The coalescence and sintering of the AuNR assembly was accomplished by both furnace thermal annealing and rapid thermal annealing at low temperatures. The mechanism through which efficient sintering occurred is investigated with scanning electron microscopy. It is found that the sintering process initially takes place locally, resulting in small AuNR aggregates. Eventually the aggregates grow into a globally continuous, percolating network structure. In addition, the overall heat transfer coefficient was measured in an environmental scanning electron microscope by following droplet growth over time. The present study opens up new opportunities to accomplish controlled assembly of nanoparticles with high concentration for different nanorod-based applications as well as in the development of percolating pathways for improvement in thermal properties.
Keywords/Search Tags:Thermal, Sintering, Assembly, Block, Polymer
Related items