Font Size: a A A

Molecular cooperativity and compatibility via full atomistic simulation

Posted on:2016-08-20Degree:Ph.DType:Dissertation
University:Northeastern UniversityCandidate:Kwan Yang, KennyFull Text:PDF
GTID:1471390017980912Subject:Materials science
Abstract/Summary:
Civil engineering has customarily focused on problems from a large-scale perspective, encompassing structures such as bridges, dams, and infrastructure. However, present day challenges in conjunction with advances in nanotechnology have forced a re-focusing of expertise. The use of atomistic and molecular approaches to study material systems opens the door to significantly improve material properties. The understanding that material systems themselves are structures, where their assemblies can dictate design capacities and failure modes makes this problem well suited for those who possess expertise in structural engineering. At the same time, a focus has been given to the performance metrics of materials at the nanoscale, including strength, toughness, and transport properties (e.g., electrical, thermal). Little effort has been made in the systematic characterization of system compatibility -- e.g., how to make disparate material building blocks behave in unison.;This research attempts to develop bottom-up molecular scale understanding of material behavior, with the global objective being the application of this understanding into material design/characterization at an ultimate functional scale. In particular, it addresses the subject of cooperativity at the nano-scale. This research aims to define the conditions which dictate when discrete molecules may behave as a single, functional unit, thereby facilitating homogenization and up-scaling approaches, setting bounds for assembly, and providing a transferable assessment tool across molecular systems.;Following a macro-scale pattern where the compatibility of deformation plays a vital role in the structural design, novel geometrical cooperativity metrics based on the gyration tensor are derived with the intention to define nano-cooperativity in a generalized way. The metrics objectively describe the general size, shape and orientation of the structure. To validate the derived measures, a pair of ideal macromolecules, where the density of cross-linking dictates cooperativity, is used to gauge the effectiveness of the triumvirate of gyration metrics. The metrics are shown to identify the critical number of cross-links that allowed the pair to deform together. The next step involves looking at the cooperativity features on a real system. We investigate a representative collagen molecule (i.e., tropocollagen), where single point mutations are known to produce kinks that create local unfolding. The results indicate that the metrics are effective, serving as a validation of the cooperativity metrics in a palpable material system. Finally a preliminary study on a carbon nanotube and collagen composite is proposed with a long-term objective of understanding the interactions between them as a means to corroborate experimental efforts in reproducing a d-banded collagen fiber.;The emerging needs for more robust and resilient structures, as well as sustainable are serving as motivation to think beyond the traditional design methods. The characterization of cooperativity is thus key in materiomics, an emerging field that focuses on developing a "nano-to-macro" synergistic platform, which provides the necessary tools and procedures to validate future structural models and other critical behavior in a holistic manner, from atoms to application.
Keywords/Search Tags:Cooperativity, Molecular, Compatibility
Related items