Font Size: a A A

Two-Dimensional Self-Assembly of Collagen-Mimetic Peptides

Posted on:2016-10-06Degree:Ph.DType:Dissertation
University:Emory UniversityCandidate:Jiang, TaoFull Text:PDF
GTID:1471390017982478Subject:Biochemistry
Abstract/Summary:
Peptide self-assembly has intrigued researchers for decades, as it offers a practical way for fabrication of biomaterials with defined structure and function. Challenge and opportunity still exist in this field where de novo peptide design cannot afford structures as sophisticated as natural ones in cells. This dissertation described the effort we have made in controlling self-assembly on scaffold of collagen-mimetic peptides.;We first demonstrated the design of two collagen-mimetic peptides, NSI and NSII comprising three sequential blocks with positive, neutral, and negative charges. Both peptides self-assembled into structurally defined sheets. Characterizations suggested a self-assembly mechanism that the triblock configuration enforced an anti-parallel alignment of collagen triple helices through complementary electrostatic interactions. Lateral extension and layered packing of triple helices afforded the two-dimensional assembly formation. A clear understanding of the underlying structures provided an attractive platform for fabrication of two-dimensional structures by mediating electrostatic interactions.;We then investigated the effects of positions and conformations of charged residues on self-assembly morphology. NSIII was described in this chapter, which self-assembled into monolayer sheets of uniform size and shape. It was proposed that the sequence change in NSIII introduced an energy penalty against Coulombic attraction energy among triple helices. The assembly force was balanced by the disassociation force, which resulted in the formation of small and uniform assemblies.;Finally, we presented a rational peptide design on the basis of the previous sheet model. Two asymmetric peptides, CP+ and CP- were described that could form monolayer sheets with positive and negative surface charge, respectively. We took advantage of the difference in rates of assembly between CP+ and CP-, and grew CP- layers on faces of CP+ sheets with the aid of electrostatic interactions. Using this strategy, we generated an ordered sandwich structure, with CP+ sheet as core, buried by CP- layers. The results suggested an exciting possibility of building complex structures with compositional and structural control.
Keywords/Search Tags:Self-assembly, CP-, Peptides, Collagen-mimetic, Two-dimensional, Structures
Related items