Font Size: a A A

Fabrication and Optimization of Ni Superalloy Inconel 600 Microtruss Materials

Posted on:2015-12-30Degree:Ph.DType:Dissertation
University:University of Toronto (Canada)Candidate:Devatha Venkatesh, BalajiFull Text:PDF
GTID:1471390017992320Subject:Engineering
Abstract/Summary:
Microtruss materials are multifunctional cellular hybrids composed of an interconnected arrangement of internal struts that can offer enhanced strength and stiffness at low densities. This study looks at the potential of Ni-based superalloys as microtruss materials. The potential of using the in-situ plastic strain imparted during stretch forming to grain boundary engineer the internal struts of Inconel 600 (IN600) cellular hybrids was also explored.;In order to examine this question, a combination of experimental and finite element (FE) methods were employed. The non-uniform plastic deformation imparted to the microtruss struts during fabrication was modeled by FE and the local changes in grain boundary character in the fabricated trusses were mapped by electron backscattered diffraction.;This study also examined the distribution of plastic strain over the microtruss architecture. A mechanical press with various pin geometries was employed to experimentally validate the FE models. Standard pin geometry results in substantially non-uniform plastic strain, which limits the maximum formability of the starting sheet material. Importantly, pins designed with tapers and spheres were shown to impart plastic strain along the entire length of the microtruss. This opened up possibility of new design strategies for facilitating grain boundary engineering over the entire truss. It may also present opportunities for enhancing the energy absorption performance of microtruss materials.;Finally, this study examined the mechanical properties of IN600 microtrusses, in particular focusing on the significance of strut end constraints in determining the overall mechanical performance. While it is straightforward to analytically determine the inelastic buckling resistance of plastically deformed struts, there is no simple way to determine the rotational end constraint of the struts deformed to varying truss angles. It was seen that end constraint rigidity k could be determined using a FE-based bifurcation analysis and the value of k was architecture dependent.
Keywords/Search Tags:Microtruss, Materials, Struts, Plastic strain
Related items