Font Size: a A A

First-Principles Study of the Electric Field Effect on the Water-Adsorbed Rutile Titanium Dioxide Surface

Posted on:2015-12-18Degree:Ph.DType:Dissertation
University:State University of New York at AlbanyCandidate:Hmiel, Abraham LFull Text:PDF
GTID:1471390017995411Subject:Nanoscience
Abstract/Summary:
TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the materials science innovation pipeline because they can interpret the results of experiments and investigate properties at the nanoscale that traditional methods cannot reach.;In this work, spin-polarized DFT calculations within the generalized gradient approximation and with the recent self-consistent opt-B88 van der Waals functional have been applied to investigate the problem of molecularly adsorbed water on the rutile (110) TiO2 surface under the influence of an applied electric field. The effective screening medium theory is used to break the symmetry of the simulation in the slab normal direction and implement a metal-like boundary condition at the edges of the simulation cell to model the charged capacitor in a real electrochemical device. This study begins with an investigation of bulk and surface properties of TiO2 to obtain a sound theoretical baseline. Following that, an attempt to obtain simple and meaningful structure-property relationships of rectangular TiO 2 nanowires with (110) facets resulting from quantum confinement. Finally, a systematic study of energetics, geometrical configuration, charge partitioning, and electronic structure of water in monomer coverage up to monolayer coverage provides insight into the usefulness of the inclusion of self-consistent van der Waals correlation effects and the effect of an external electric field in this model of adsorption on a prototypical metal oxide surface. Nontrivial differences between the two functionals' description of adsorption of water, electrostatic characteristics, and electronic structure of the model surface are reported in the zero-field limit as well as with an applied field.
Keywords/Search Tags:Field, Surface, Water, Electronic structure, Model
Related items