Font Size: a A A

Characterization of Atomic Structure, Relaxation and Phase Transformation Mechanisms in Bulk and Thin Film Amorphous Chalcogenides and Gallium Antimonide

Posted on:2015-01-22Degree:Ph.DType:Dissertation
University:University of California, DavisCandidate:Edwards, Trenton GerardFull Text:PDF
GTID:1471390017999978Subject:Engineering
Abstract/Summary:
This dissertation details the characterization of the atomic structure, relaxation processes and phase transformation mechanisms in a variety of chalcogenide (selenides and tellurides) and other non-oxide (Ga-Sb alloys) glasses which are highly relevant to optoelectronic and phase change memory applications. One of the principal goals of these studies is to develop a fundamental, atomistic understanding of the structure-property relationships in these materials.;Variable temperature Raman spectroscopy is used to the study the structure and its temperature dependent relaxation in GexSe100-x glasses and supercooled liquids with x ≤ 33.33 %. It is shown that the compositional dependence of the relative fractions of the edge- and corner-shared GeSe4 tetrahedra is fully consistent with a structural model based on random connectivity between the tetrahedral and chain elements. Temperature-dependent structural changes involve a progressive conversion of edge-shared to corner shared GeSe4 tetrahedra with decreasing equilibration temperature. The time scale of this structural conversion agrees with both enthalpy and shear relaxation near the glass transition. The temperature dependent change in the edge- vs. corner- sharing tetrahedral speciation is shown to be related to the production of configurational entropy, indicating a connection between structural relaxation, configurational entropy, and viscous flow.;A combination of Raman and 77Se nuclear magnetic resonance (NMR) spectroscopy is applied to study the structure of a series of Se-deficient GexSe100-x glasses, with 42 ≥ x ≥ 33.33. Considerable violation of chemical order in the nearest-neighbor coordination environments of the constituent atoms is observed in the stoichiometric GeSe2 glass. On the other hand, the presence of a random distribution of Ge-Ge bonds can be inferred in the Se-deficient glasses. Furthermore, the results of this study conclusively indicate that the structure of these glasses is intermediate between a randomly connected and a fully clustered network of GeSe4 tetrahedra and Se chains. Additionally, a new two-dimensional NMR spectroscopic technique is developed and applied to Ge-Se glasses that allowed the separation of isotropic and anisotropic chemical shifts. Through the analysis of the anisotropic sideband pattern in the second dimension it is possible to detect up to four distinct types of Se environments in the glass structure on the basis of their characteristic chemical shift anisotropies. 125Te NMR chemical shift systematics is established for coordination environments of Te atoms in a wide range of crystalline and glassy tellurides in the Ga-As-Sb-Te system.;125Te NMR spectroscopy is then used to investigate the short-range structure of amorphous and crystalline Ge1Sb2 Te4 and Ge2Sb2Te5 phase change alloys. Both alloys are found to consist of only heteropolar Ge/Sb-Te bonds in the amorphous and crystalline state and strong vacancy clustering in the nanocrystalline state that may facilitate a rapid displacive transformation between the amorphous and crystalline states without the need of significant atomic rearrangement or diffusion. Based on these 125Te NMR results a Te-centric model of the phase change mechanism in GST alloys is proposed.;Structure and phase changes in amorphous Ga-Sb alloys are studied using synchrotron x-ray diffraction and 71Ga and 121Sb NMR spectroscopy. Pressure induced phase transformations in amorphous GaSb is shown to be consistent with the existence of an underlying polyamorphic phase transition between a low and a high-density amorphous phase. NMR results for amorphous Ga46Sb54 indicate that both Ga and Sb atoms are fourfold coordinated with 40% of these atoms participating in homopolar bonding in the as-deposited film. Subsequent crystallization into the zinc blend structure therefore requires extensive bond switching and elimination of homopolar bonds. For amorphous Ga14Sb86 both Ga and Sb atoms are found to be threefold coordinated allowing for a fast phase change kinetics although crystallization of this alloy leads to phase separation of GaSb domains in an Sb matrix, whereby all Ga becomes 4 coordinated. These structural characteristics of the amorphous and crystalline Ga-Sb alloys may have important implications in understanding the kinetics of the associated phase change process that defines the suitability of these materials for non-volatile memory applications.
Keywords/Search Tags:Phase, Structure, Amorphous, Relaxation, Transformation, Atomic, NMR
Related items