Font Size: a A A

Applying Vertically Aligned Carbon Nanotubes in Energy Harvesting and Energy Storag

Posted on:2018-06-09Degree:Ph.DType:Dissertation
University:Tulane University School of Science and EngineeringCandidate:Oguntoye, MosesFull Text:PDF
GTID:1471390020456363Subject:Chemical Engineering
Abstract/Summary:
This work has been a scientific inquisition into the potential of carbon nanotubes, fabricated in a vertically aligned configuration, for their application to solving pressing energy problems. This dissertation is introduced by providing a background to energy storage and generation as well as the various major equipment and techniques used throughout the scientific inquisition. The generic method of vertically aligned carbon nanotubes (VACNT) growth is then presented. By using a combination of recipes previously described in literature, an easy to replicate method of growing carbon nanotubes is developed with demonstrated success on different substates. The different conditions required to facilitate efficiency in the VACNT growth are highlighted. The properties of the as-grown VACNT forest are also studied and presented. Based on the recipe used, the VACNT are categorized as multiwalled and the number of walls is confirmed to be about 15 walls using transmission electron microscopy (TEM). Their graphitic nature is confirmed using thermogravimetric analysis (TGA). The surface area characterization is done using the Brunauer-Emmett-Teller (BET) method and weight-gain method.;The first part of this dissertation deals with the application of the VACNT electrodes fabricated for the harvesting of mechanical energy using the triboelectric nanogenerator (TENG) technology. Here, energy is harvested from mechanical systems using both polytetrafluoroethylene (PTFE) and polyethylene (PET) counter electrodes to confirm the applicability of VACNT electrodes for this purpose. A mechanism for the electron motion is proposed based on the already identified dielectric-metal TENG pairing. Furthermore, the usefulness of this technology is demonstrated further by charging a 0.47microF capacitor to 4.5V in one minute using the VACNT-PTFE TENG.;The second part of this dissertation deals with the application of VACNT electrodes in energy storage using supercapacitors. Firstly, the performance of VACNT electrodes by themselves is studied in both 3-electrode and 2-electrode systems as well as in both aqueous and organic electrolytes. Due to the larger electrochemical window possible, better performance is obtained from the system using VACNT electrodes in organic electrolyte than is obtained in aqueous electrolyte. Safety and cost limitations of the organic electrolyte forced further research into the improvement of performance in aqueous electrolyte. The solution found is to incorporate another mechanism of supercapacitive energy storage besides the formation of an electric double layer on the VACNT. This involved the uniform deposition of nickel cobaltite (a well known faradaic capacitive material) on the VACNT surface as well as using freeze-drying to preserve the vertical alignment structure. All the considerations required to achieve these goals are expressed and discussed. Overall, a comparable energy density is obtained from the aqueous electrolyte after faradaic capacitive modification of the VACNT electrode.;Chapters 3 and 5 of this dissertation incorporate material in peer-reviewed journal papers published by the author.
Keywords/Search Tags:Carbon nanotubes, VACNT, Vertically aligned, Energy, Using, Dissertation
Related items