Font Size: a A A

Growth and Characterization of alpha-PbO for Room Temperature Radiation Detection

Posted on:2015-01-29Degree:Ph.DType:Dissertation
University:University of California, BerkeleyCandidate:Ford, Erin LeighFull Text:PDF
GTID:1471390020950103Subject:Engineering
Abstract/Summary:
A global trading structure and high throughput of shipping containers into ports around the world increases the chance of nuclear terrorism via cargo containers. Harmless radioactive sources confuse and impede detection of the materials that pose a real threat, making spectroscopy difficult and requiring detectors with high resolution. The current methods that are used to check containers in ports have security flaws, and only 5% of all shipping containers are checked. The development of semiconductor gamma-ray detectors is one of the protocols being advanced to alleviate this risk because they can function at room temperature and they are cost effective, easily produced, and have high resolution. This dissertation has addressed the current lack of "perfect" room temperature detector materials by investigating alpha-PbO, a novel material in this field. This includes the development of a growth process for alpha-PbO thin films, as well as its structural and performance characterization as a detector material.;Because we intend alpha-PbO to be a photoconductive detector, it should have certain properties. A photoconductive detector consists of a highly resistive material with a voltage bias across it. It absorbs incident gamma-rays, creating electron-hole pairs that provide a signal. To function well, it must have a high atomic number and a high density in order to absorb high-energy photons via the photoelectric effect. It should also have a large resistivity and a wide band gap to avoid large leakage currents at room temperature. Finally, it must have good charge carrier transport properties and detector resolution in order to be able to determine the characteristic energy peaks of the radiation-emitting source. We chose alpha-PbO because it has a very high Z and a very high density and a band gap in the correct range. It also has a rich history of use as a photoconductor that reaches back to the 1950s.;Numerous methods have been used to grow thin films of alpha-PbO. However, rarely are those films single phase or highly oriented. Pulsed laser deposition provides a method to grow epitaxial thin films of alpha-PbO. The structure of the grown films was characterized using X-ray diffraction 2θ-o scans, rocking curves, and reciprocal space mapping. Feedback from a parameterized study of the structural characterization enabled optimization of the growth process to improve the quality of the thin films.;The methods used for the optical measurement of alpha-PbO films included absorption spectroscopy and ellipsometry. Determination of the spectral absorption coefficient was achieved by transmission spectroscopy and reflection spectroscopy via a PerkinElmer Lambda 950 UV-Vis spectrophotometer.;Study of the electronic and transport properties of alpha-PbO is important in order to understand how the material will behave as a radiation detector.;Spectral photoconductivity was measured to ensure that alpha-PbO's response to light was large enough for it to be a useful detector material and to confirm the band gap measurements.;In the field of detector materials, the mutau-product is commonly used as a figure of merit because it enables a measurement of the trapping length of the charge carriers within the detector. Many's equation, which is a derivation of the photocurrent with respect to the applied voltage across a wide band gap semiconductor, is one of the methods used to determine the mutau-product. The photocurrent voltage measurements were obtained from the 0.5 V to 80 V range. This data was difficult to fit with Many's equation over that whole range. Higher voltages displayed deviation from ideal behavior due to the contact effects, but at the lower voltages the data were unaffected. Fits to the lower voltage range, from 0.5 V to 10 V, yielded mutau = 6.8 x 10-4 cm2/V.;Room temperature photoconductors will ultimately be used to detect gamma-rays; however, thin films do not have enough stopping power to absorb the total energy of a gamma-ray. Therefore, we study the alpha-PbO detector response to radiation in the form of alpha particles because they are large, charged, and relatively easy to stop. SRIM calculation estimated that alpha particles have a range of up to 16 mum in alpha-PbO. The initial long-duration film growth yielded films that were ∼ 8 mum thick. Therefore, a full energy peak from alpha particles was not seen in alpha-PbO. We did see a shoulder protruding out of the noise peak due to the charge carriers that were created before the alpha particles escaped the detector volume. (Abstract shortened by UMI.).
Keywords/Search Tags:Alpha-pbo, Room temperature, Detector, Growth, Thin films, Radiation, Characterization, Band gap
Related items