Font Size: a A A

A Comprehensive Strategy for the Assessment of Stability Conditions in Porous Media at Varying Levels of Water Saturation

Posted on:2017-03-29Degree:Ph.DType:Dissertation
University:Northwestern UniversityCandidate:Mihalache, ConstanceFull Text:PDF
GTID:1472390017450589Subject:Civil engineering
Abstract/Summary:
Assessing the potential for instability in non-saturated geomaterials is of critical importance for the prevention of disastrous failures that occur through these materials, from natural hazards such as rainfall-induced flow slides, to underwater sediment collapse due to methane hydrate dissociation, to the failure of key infrastructure components. In particular, the gaseous and liquid phases present within the pores of a geomaterial play a vital role in its overall behavior, and consequently must be considered in stability analyses. In this work, analytical techniques are presented to evaluate material stability for the different saturation states that occur during a wetting process, where soils progress from unsaturated conditions in the funicular regime, to quasi-saturated conditions in the insular regime, to complete saturation. Each of these different saturation states involves different interactions between the pore fluids and the solid skeleton hosting them. For example, while unsaturated soil behavior is characterized by the capillary effects from the interface between the gaseous and liquid phases, the dominant effect of isolated bubbles within the quasi-saturated regime is to increase the compressibility of the interstitial fluid mixture. By considering the different characteristics of these saturation states, energy-based work input expressions are developed and then used to derive criteria for loss of controllability of the material response. These criteria are then used to assess the stability of geomaterials under various loading configurations. Then, to unite the funicular and insular saturation regimes, the same methodology is adapted to the derivation of comprehensive three-phase criteria for non-saturated soils. An alternative interpretation of such constitutive singularities is also derived, with reference to the ill-posedness of the mass balance equations that control the transient flow of the fluid constituents of a deformable multiphase porous medium. Lastly, the concepts considered throughout the study are applied to the solution of boundary-value problems, using a finite element approach. Overall, it is shown that depending on the considered saturation regime, different stability criteria need to be applied for the accurate interpretation of material behavior. These techniques provide a mechanistic interpretation for a range of processes, such as the nature of so-called "wetting-collapse" events, the variability of the instability line for flow failures acting through gassy sediments, and the onset of runaway failures at the transition between funicular and insular states.
Keywords/Search Tags:Stability, Saturation, Failures, Conditions, States
Related items