Font Size: a A A

MXenes: A New Family of Two-Dimensional Materials and its Application as Electrodes for Li-ion Batteries

Posted on:2015-05-13Degree:Ph.DType:Dissertation
University:Drexel UniversityCandidate:Abdelmalak, Michael NaguibFull Text:PDF
GTID:1472390017489337Subject:Engineering
Abstract/Summary:
Two-dimensional, 2D, materials, such as graphene, possess a unique morphology compared to their 3D counterparts, from which interesting and novel properties arise. Currently, the number of non-oxide materials that have been exfoliated is limited to two fairly small groups, viz. hexagonal, van der Waals bonded structures (e.g. graphene and BN) and layered transition metal chalcogenides.;The MAX phases are a well established family of layered ternary transition metal carbides and/or nitrides, with a composition of Mn +1AXn, where M is an early transition metal, A is one of A group elements, X is C and/or N; with n = 1, 2, or 3. The aim of this work is to exfoliate the MAX phases and produce 2D layers of transition metals carbides and/or nitrides by the selective etching of the A layers from the MAX phases. We labeled the resulting 2D M n+1Xn layers "MXenes" to emphasize the loss of the A group element from the MAX phases and the suffix "ene" to emphasize their 2D nature and their similarity to graphene.;The etching process was carried out using aqueous hydrofluoric acid at room temperature. Thirteen different MXenes were produced as a result of this work, viz., Ti2C, Nb2C, V2C, Mo2C, (Ti0.5,Nb0.5)2C, (Ti 0.5,V0.5)2C, Ti3C2, (Ti 0.5,V0.5)3C2, (V0.5,Cr 0.5)3C2, Ti3CN, Ta4C 3, Nb4C3 and (Nb0.5,V0.5) 4C3. The as-synthesized MXenes were terminated with a mixture of OH, O, and/or F groups. Sonicating MXenes resulted in separating the stacked layers to a small extent. When Ti3C2 was intercalated with dimethylsulfoxide, however, followed by sonication in water, large-scale delamination occurred, which resulted in aqueous colloidal solutions that could in turn be fabricated into MXene "paper".;MXenes were found to be electrically conductive, hydrophilic and stable in aqueous environments, a rare combination indeed, with huge potential in many applications, from energy storage, to sensors to catalysts. This work focused on the use of MXenes as electrode materials in Li-ion batteries. They exhibited excellent capability to handle high cycling rates with good gravimetric capacities. The lithiation and delithiation were found to be due to redox intercalation/deintercalation reactions.
Keywords/Search Tags:Materials, Mxenes, MAX phases
Related items