Font Size: a A A

Predictive control of a hybrid powertrain

Posted on:2016-12-23Degree:Ph.DType:Dissertation
University:Michigan State UniversityCandidate:Yang, JieFull Text:PDF
GTID:1472390017981823Subject:Mechanical engineering
Abstract/Summary:
Powertrain supervisory control strategy plays an important role in the overall performance of hybrid electric vehicles (HEVs), especially for fuel economy improvement. The supervisory control includes power distribution, driver demand fulfillment, battery boundary management, fuel economy optimization, emission reduction, etc. Developing an optimal control strategy is quite a challenge due to the high degrees of freedom introduced by multiple power sources in the hybrid powertrain. This dissertation focuses on driving torque prediction, battery boundary management, and fuel economy optimization.;For a hybrid powertrain, when the desired torque (driver torque demand) is outside of battery operational limits, the internal combustion (IC) engine needs to be turned on to deliver additional power (torque) to the powertrain. But the slow response of the IC engine, compared with electric motors (EMs), prevents it from providing power (torque) immediately. As a result, before the engine power is ready, the battery has to be over-discharged to provide the desired powertrain power (torque). This dissertation presents an adaptive recursive prediction algorithm to predict the future desired torque based on past and current vehicle pedal positions. The recursive nature of the prediction algorithm reduces the computational load significantly and makes it feasible for real-time implementation. Two weighting coefficients are introduced to make it possible to rely more on the data newly sampled and avoid numerical singularity. This improves the prediction accuracy greatly, and also the prediction algorithm is able to adapt to different driver behaviors and driving conditions.;Based on the online-predicted desired torque and its error variance, a stochastic predictive boundary management strategy is proposed in this dissertation. The smallest upper bound of future desired torque for a given confidence level is obtained based on the predicted desired torque and prediction error variance and it is used to determine if the engine needs to be proactively turned on. That is, the engine can be ready to provide power for the "future" when the actual power (torque) demand exceeds the battery output limits. Correspondingly, the battery over-discharging duration can be reduced greatly, leading to extended battery life and improved HEV performance.;To optimize powertrain fuel economy, a model predictive control (MPC) strategy is developed based on the linear quadratic tracking (LQT) approach. The finite horizon LQT control is based on the discrete-time system model obtained by linearizing the nonlinear HEV and only the first step of the solution is applied for current control. This process is repeated for each control step. The effectiveness of the supervisory control strategy is studied and validated in simulations under typical driving cycles based on a forward power split HEV model. The developed MPC-LQT control scheme tracks the predicted desired torque trajectory over the prediction horizon, minimizes the powertrain fuel consumption, maintains the battery state of charge at the desired level, and operates the battery within its designed boundary.
Keywords/Search Tags:Power, Hybrid, Fuel, Battery, Desired, Control strategy, Supervisory control, HEV
Related items