Font Size: a A A

Design Techniques for Power-Aware Combinational Logic SER Mitigation

Posted on:2015-08-26Degree:Ph.DType:Dissertation
University:Vanderbilt UniversityCandidate:Mahatme, Nihaar NFull Text:PDF
GTID:1478390017993571Subject:Electrical engineering
Abstract/Summary:
The history of modern semiconductor devices and circuits suggests that technologists have been able to maintain scaling at the rate predicted by Moore's Law [Moor-65]. With improved performance, speed and lower area, technology scaling has also exacerbated reliability issues such as soft errors. Soft errors are transient errors that occur in microelectronic circuits due to ionizing radiation particle strikes on reverse biased semiconductor junctions. These radiation induced errors at the terrestrial-level are caused due to radiation particle strikes by (1) alpha particles emitted as decay products of packing material (2) cosmic rays that produce energetic protons and neutrons, and (3) thermal neutrons [Dodd-03], [Srou-88] and more recently muons and electrons [Ma-79] [Nara-08] [Siew-10] [King-10]. In the space environment radiation induced errors are a much bigger threat and are mainly caused by cosmic heavy-ions, protons etc. The effects of radiation exposure on circuits and measures to protect against them have been studied extensively for the past 40 years, especially for parts operating in space. Radiation particle strikes can affect memory as well as combinational logic. Typically when these particles strike semiconductor junctions of transistors that are part of feedback structures such as SRAM memory cells or flip-flops, it can lead to an inversion of the cell content. Such a failure is formally called a bit-flip or single-event upset (SEU). When such particles strike sensitive junctions part of combinational logic gates they produce transient voltage spikes or glitches called single-event transients (SETs) that could be latched by receiving flip-flops. As the circuits are clocked faster, there are more number of clocking edges which increases the likelihood of latching these transients. In older technology generations the probability of errors in flip-flops due to SETs being latched was much lower compared to direct strikes on flip-flops or SRAMs leading to SEUs. This was mainly because the operating frequencies were much lower for older technology generations. The Intel Pentium II for example was fabricated using 0.35 microm technology and operated between 200-330 MHz. With technology scaling however, operating frequencies have increased tremendously and the contribution of soft errors due to latched SETs from combinational logic could account for a significant proportion of the chip-level soft error rate [Sief-12][Maha-11][Shiv02] [Bu97]. Therefore there is a need to systematically characterize the problem of combinational logic single-event effects (SEE) and understand the various factors that affect the combinational logic single-event error rate.;Just as scaling has led to soft errors emerging as a reliability-limiting failure mode for modern digital ICs, the problem of increasing power consumption has arguably been a bigger bane of scaling. While Moore's Law loftily states the blessing of technology scaling to be smaller and faster transistor it fails to highlight that the power density increases exponentially with every technology generation. The power density problem was partially solved in the 1970's and 1980's by moving from bipolar and GaAs technologies to full-scale silicon CMOS technologies. Following this however, technology miniaturization that enabled high-speed, multicore and parallel computing has steadily increased the power density and the power consumption problem. Today minimizing the power consumption is as much critical for power hungry server farms as it for portable devices, all pervasive sensor networks and future eco-bio-sensors. Low-power consumption is now regularly part of design philosophies for various digital products with diverse applications from computing to communication to healthcare.;Thus designers in today's world are left grappling with both a "power wall" as well as a "reliability wall". Unfortunately, when it comes to improving reliability through soft error mitigation, most approaches are invariably straddled with overheads in terms of area or speed and more importantly power. Thus, the cost of protecting combinational logic through the use of power hungry mitigation approaches can disrupt the power budget significantly. Therefore there is a strong need to develop techniques that can provide both power minimization as well as combinational logic soft error mitigation. This dissertation, advances hitherto untapped opportunities to jointly reduce power consumption and deliver soft error resilient designs. Circuit as well as architectural approaches are employed to achieve this objective and the advantages of cross-layer optimization for power and soft error reliability are emphasized.
Keywords/Search Tags:Power, Combinational logic, Soft error, Scaling, Radiation particle strikes, Mitigation, Circuits, Technology
Related items