| The drag reduction mechanism of the wall turbulent boundary layer with superhydrophobic micro-riblets and micro-convex posts is studied experimentally.The instantaneous velocity field in the turbulent boundary layer of the hydrophilic wall,superhydrophobic micro-riblets wall and micro-convex posts wall are measured by Time-Resolved Particle Image Velocimetry(TRPIV).The frictional shear stress of the three kinds of walls are compared and analyzed.It is found that the superhydrophobic walls achieve drag reduction effect.However,the drag reduction rate of the superhydrophobic micro-riblets wall is higher than that of the superhydrophobic micro-convex posts wall,and the drag reduction rate of the superhydrophobic micro-riblets wall is 13.8%,while the drag reduction rate of the superhydrophobic micro-convex posts wall is 10.2%.Through comparison and analysis on three kinds of wall corresponding average velocity profile in the turbulent boundary layer,turbulence intensity and Reynolds shear stress profile,it is found that the fluid indeed has sliding speed in the superhydrophobic wall,and in the area of the same normal height at15(27)y(10)(27)100,streamwise turbulence intensity corresponding hydrophilic wall,superhydrophobic micro-riblets and micro-convex posts wall decreases.At the same time,in the area of the same normal height at 30(27)y(10)(27)8 0,the wall-normal turbulence intensity of superhydrophobic micro-convex posts,hydrophilic wall and superhydrophobic micro-riblets wall decrease successively.Over the whole wall-normal height,the maximum values of Reynolds shear stress on hydrophilic wall,superhydrophobic micro-convex posts and micro-riblets wall decrease successively.Based on the conditional sampling and phase averaging of the spanwise vortex identified by the)34(ci criterion,it is found that the amplitude of the fourth quadrant event induced by the spanwise vortex of superhydrophobic micro-riblets wall weakens nearby at y+?63,which leads to the intensity of its sweep events decreasing,and then the drag reduction is realized.In order to further analyze the turbulent fluctuation energy,the instantaneous fluctuation velocity of the whole turbulent boundary layer is summed in time and streamwise-normal space by using the Proper Orthogonal Decomposition and is dimensionless to characterize the fluctuation degree of the flow field.The results show that the spanwise slip characteristics of superhydrophobic micro-convex posts increase the drag and weaken the drag reduction effect caused by the streamwise slip.The streamwise slip characteristics of the superhydrophobic micro-riblets wall can effectively suppress turbulence fluctuation and achieve better drag reduction effect.In addition,the applicability of Taylor’s freezing hypothesis in the superhydrophobic wall turbulent boundary layer is verified,and the effect of slip and wall roughness on turbulent structure is opposite through spatial two-point correlation analysis.The turbulence structure is inhibited by slip and induced by wall roughness. |