| In this thesis,we introduce several kinds of semigroups and study some properties of them.The main results are given in following.In Chapter 1,we give the introduction and preliminaries.In Chapter 2,we introduce a new kind of subsemigroups of full transformayion semigroup Tx,that is E-order-preserving transformation semigroup EOPx.When X is finite set,we consider the regularity and Green's relations for EOPn firstly,then consider the rank of EOPn when the cardinal of each E-classes are equal.The main results are given in following.Theorem 2.0(1)E = X×Xn(?)EOPn=On;(2)E = Ixn(the identity relation on Xn)(?)EOPn = Tn.Theorem 2.1.1.1 For anyα,β∈EOPn,the following are equivalent(1)(α,β)∈(?);(2)Xnα= Xnβand(?)A∈Xn/E,(?)B,C∈Xn/E,(?)Aα(?)Bβ,Aβ(?)Cα;(3)(?);Ï€(α)→π(β)is an E*-admissible mapping andα* =Φβ*.Theorem 2.1.1.2 Forα,β∈EOPn,(α,β)∈R(?)β=αφfor some E*-order-preserving bijectionφ;Xnα→Xnβ.Theorem 2.1.1.3 Forα,β∈EOPn,(α,β)∈D(?)α*ψ=ψβ* for some E*-admissible mappingψ;Ï€(α)→π(β)and some E*-order-preserving bijectionΨ;Xnα→Xnβ.Theorem 2.1.2.1 Forα∈EOPn,α∈R(EOPn)(?)A∈Xn/E,there exists B∈Xn/E such that Xnα∩A(?)Bα.Proposition 2.1.2.4 The following are equivalent in EOPn;(1)EOPn is regular semigroup;(2)R(EOPn)is a regular subsemigroup of EOPn;(3)EOPn = Tn or EOPn = On;(4)E=Xn×Xn or E = Ixn.Theorem 2.1.3.1 Forα,β∈R(EOPn),(α,β)∈(?)Xnα= Xnβ.Theorem 2.1.3.2 Forα,β∈R(EOPn),(α,β)∈(?)Ï€(α)=Ï€(β).Theorem 2.1.3.3 Forα,β∈R(EOPn),(α,β)∈D(?)There exists an E*-order-preserving bijectionφfrom Xnαinto Xnβ. Theorem 2.2.5.2 EOPx=ξ11*,ξ12*,...,ξ1(2n-2)*,σ,Ï,π>.Consquently,rank(EOPx)≤2n+1.In Chapter 3,we study the sandwich semigroup T(X,Y;θ).For finite sandwich semigroup T(X,Y;θ),we consider the regularity and Greenls relations for it,study some numeral prop-erties of R(X,Y;θ),and discuss the idempotent-generated properties and the idempotent rank of RST(X,Y;θ).The main results are given in following.Theorem 3.1.1.1 Let T(X;θ)be the variant semigroup on Tx,then(1)T(X,X;θ)= T(X;θ)when X = Y.(2)T(X,X;θ)= Tx when X;Y andθ= 1|x.Theorem 3.1.1.2 Let MO = {aθ;α∈T(X,Y;θ)},then(2)Mθ(?)T(X,Y;θ)whenθis injective.(3)Mθ= Tx and T(X,Y;θ)(?)Tx whenθis bijective.Theorem 3.1.2.1 For anyα,β∈T(X,Y;θ),α≠β.Then(α,β)∈(?)Xα= Yθα= Yθβ= Xβ.Theorem 3.1.2.2 For anyα,β∈T(X,Y;θ),α≠β.Then(α,β)∈(?)ker(α)= ker(β),and bothθ|xαandθ|xβare injective.Theorem 3.1.2.4 Letα=(?)∈T(X,Y;θ),then(2)α∈R(T(X,Y;θ))(?)θ|xαis injective and Ai∩Yθ≠φfor i = 1,2,...,γ.(?)|Lα≥2 and |Rα|≥2,or |Lα| = 1 and |Rα| =|Y|.Theorem 3.1.2.5 For anyα,β∈T(X,Y;θ),α≠β.Then(α,β)∈D if and only if the following.(a)Lα= Lβand bothθ|Xαandθ|Xβare not injective.(b)Rα= Rβand |Xα|= |Xβ|>|Yθα| = |Yθβ|.(c)Bothθ|Xαandθ|Xβare injective,and |Xα| = |Yθα| = |Yθβ| = |Xβ|.Theorem 3.1.3.1 R(T(X,Y;θ))is a regular subsemigroup of T(X,Y;θ).Theorem 3.1.3.4 For anyα,β∈R(T(X,Y;θ)),α≠β.Then(α,β)∈(?)R(?)Xα= Xβ. Theorem 3.1.3.5 For anyα,β∈R(T(X,Y;θ)),α≠β.Then(α,β)∈RR(?)ker(α)= ker(β).Theorem 3.1.3.6 For anyα,β∈R(T(X,Y;θ)),α≠β.Then(α,β)∈DR(?)|Xα|= |Xβ|.Theorem 3.2.3.5 RST(X,Y;θ)=<E(Dr-1)>.Theorem 3.4.2 For any I(?)E(Dr-1),RST(X,Y;θ)=<I>(?)Γ(I)is strongly connected R-complete graph, whereΓ(I)is the directed graph accompany with I.Theorem 3.4.7 Let irank(RST(X,Y;θ))be the idempotent rank of RST(X,Y;θ), thenirank(RST(X,Y;θ))≥r(r - 1)n-r+1/2.In Chapter 4,we introduce a new subsemigroup of T(X,Y; 0),that is order-preserving sandwich semigroup O(X,Y;θ).For finite order-preserving sandwich semigroup O(X,Y;θ), we consider the regularity,Green's relations,and some certain properties for it.The main results are given in following.Theorem 4.1.10(X,Y;θ)= Ox when X = Y andθ= 1x.Theorem 4.1.2 Let Oθ={αθ;α∈O(X,Y;θ)},then(1)Oθis a subsemigroup of Ox.(2)Oθ(?)O(X,Y;θ)ifθis injective.(3)Oθ= Ox and O(X,Y;θ)(?)Ox ifθis bijective.Theorem 4.2.1.2 For anyα,β∈O(X,Y;θ),α≠β,(α,β)∈(?)Xα= Yθα= Yθβ= Xβ.Theorem 4.2.1.3 For anyα,β∈O(X,Y;θ),α≠β,(α,β)∈(?)ker(α)= ker(β) and bothθ|xαandθ|xβare injective.Theorem 4.2.1.6 For anyα,β∈O(X,Y;θ),α≠β,then(α,β)∈D if and only if one of the following.(1)Lα=Lβand bothθ|xαandθ|Xβare not injective.(2)Rα= Rβand |Xα| = |Xβ|>|Yθα| = |Yθβ|.(3)Bothθ|Xαandθ|Xβare injective and |Xα| = |Yθα| =|Yθβ|=|Xβ|.Theorem 4.2.2.2 For anyα∈O(X,Y;θ).α∈R(O(X,Y;θ))if and only if A∩Yθ≠φfor each A∈X/ker(α)andθ|xαis injective. Theorem 4.2.2.3 R(O(X,Y;θ))is a regular subsemigroup of O(X,Y;θ).Theorem 4.2.3.1 For anyα,β∈R(O(X,Y;θ)),α≠β,(α,β)∈LR if and only if Xα= Xβ.Theorem 4.2.3.2 For anyα,β∈R(O(X,Y;θ)),α≠β,(α,β)∈RR if and only if ker(α)=ker(β)Theorem 4.2.3.3 For anyα,β∈R(O(X,Y;θ)),α≠β,(α,β)∈DR if and only if |Xα|= |Xβ|.In Chapter 5,we give some futher work.KeyWords E-order-preserving Transformations Semigroups,Sandwich Semigroup,Order-preserving Sandwich Semigroup2000 MR Subject Classification 20M10Chinese Library Classification O152.7... |