Font Size: a A A

Study On Biocatalytic Baeyer-Villiger Oxidation

Posted on:2007-06-29Degree:MasterType:Thesis
Country:ChinaCandidate:A F ZhengFull Text:PDF
GTID:2121360212455326Subject:Environmental Science
Abstract/Summary:PDF Full Text Request
Baeyer-Villiger oxidation is an important chemical conversion, its products and intermediates can be used to produce a lot of medicine and fine chemicals. Its success is largely due to its versatility: a variety of carbonyl compounds can be oxidized, a large number of functional groups are tolerated, the regiochemistry is highly predictable and so on, but the oxidants that the traditional chemistry way needs have a number of problem in their production, storage, transportation and reaction, Chemistry way has not a high stereochemistry yet. However, biotransformations have many attractive characters, such as substrate-, stereo-, chemo- and enantioselectivity, so it has a great advantage in the fine chemical industry and has a bright prospect in the industrial biological catalysis.In order to study Baeyer-Villiger oxidation, we isolated a strain which can utilize cyclohexanone as sole carbon source and had a primary research on it. Its product was identified by GC/MS. Effects of pH, volume, concentration of cyclohexanone, cultivating time, temperature and rotate speed on the growth of bacteria were discussed, and the other organic substrates were also studied.The strain was identified as Plesiomonas sp.. The result of orthogonal test made it sure that the best growth condition of the strain is: rotate speed 150 rpm, temperature 30℃, pH7.0, concentration of cyclohexanone1ml/L. There is caprolactone in the product of the fermentation with cyclohexanone as substrate by GC/MS,which indicated that the strain can catalyse Baeyer-Villiger oxidation.In addition,the strain can utilize other organic substrates having the similar structure with cyclohexanone such as cyclohexane, cyclopentanone, Swertiamarin as sole carbon source.So the strain can be applied extentively.
Keywords/Search Tags:cyclohexanone, Caprolactone, biotransformation, Baeyer-Villiger oxidation
PDF Full Text Request
Related items