Font Size: a A A

On The Jesmanowicz Conjecture Of Pythagorean Triples

Posted on:2016-05-09Degree:MasterType:Thesis
Country:ChinaCandidate:J J XingFull Text:PDF
GTID:2180330461468679Subject:Basic mathematics
Abstract/Summary:PDF Full Text Request
In this paper,we prove that’the conjeeture of Je§manowl’cz concerning pythagore— an triples for the diophantine equaltion(s2-t2).+(2st)y=(s2+t2)x holds in some special cases.By using elementary congruence,quadratic residue and bi.quadratic residue characters,we get the following results:For the case of s一t=3,t=n,and 3 n,the Conjecturre of Jexmanowicz holds when one 0f the following conditions is.satisfied.(I)n≡3(mod8);(II)n≡7(mod8),and 2n+3 exists a prime factor p such that p≠1(modl6);(III)n≡9(modl6);(IV)n≡4(modl6);(V)n≡0(mod8),and 2n+3 doesn’t have any prime factor p Such thalt p≡1(mod4);(VI)礼≡5(mod8),and 2礼+3 doesn’t have any prime flactor p Such that p≡l(mod4);(VII)n≡1(modl6),and 2n+3 doesn-t have any prime fa.ctor p Such that p≡1(mod4).For the case of s—t=5,t=钆,and 5 n,the conjeeture of Jesmanowicz holds when one of the following conditions is satisfied.(I)n≡2(mod8);(II)n三6(mod8),and 2n+5 exists a prime factor p such that p≠1(modl6);(III)n≡4(mod8);(IV)n≡7(mod8).
Keywords/Search Tags:Jesmanowicz’s conjecture, congruence, quadratic residue, bi-quadratic residue characters Legendre symbol, Jacobi symbol
PDF Full Text Request
Related items