| In this paper,we consider the non-real eigenvalues and some simple properties of eigencurve for fourth-order indefinite problems.The main works are:In the first chapter,we study some simple properties of eigencurves for the two-parameter fourth-order indefinite differential equation (p(x)y")"+q(x)y=(λr(x)+μ)y,a≤x≤b and combined with separated boundary condition cos(θ1)y’(a)-sin(θ1)p(a)y"(a)=0,cos(θ2)y’(b)-sin(θ2)p(b)y"(b)=0, cos(θ3)y(a)-sin(θ3)[p(x)y"(x)]’(a)=0,cos(θ4)y(b)-sin(θ4)[[(x)y"(x)]’(b)=0 These properties provides fundamental basis for the existence of non-real eigenvalue in the third chapter.In the second chapter,we study the fourth-order indefinite problem τy:=y(4)+qy=λωy,y(-1)=y(1)=y"(-1)=y"(1)=0,y∈L|ω|2[-1,1] on[-1,1],combined with condition that q and ω are real-valued functions satisfying ω(x)≠0 a.e.x∈[-1,1],q,ω∈L1[-1,1] and ω,(x) changes sign on [-1,1].We obtain a priori bounds for possible non-real eigenvalues and a sufficient condition for the existence of non-real eigenvalues.In the third chapter,we study the fourth-order linear indefinite problem τy:=(p(x)y")"+q(x)y=λω(x)y,x∈[0,1], B1y:=y(0)cosθ1-py"’(0)sinθ1=0, B2y:=y(1)cosθ2-py"’(1)sinθ2=0, B3y:=y’(0)cosθ3-py"(0)sinθ3=0, B4y:=y’(1)cosθ4-py"(1)sinθ4=0 combined with condition that q and ω are real-valued functions satisfying p(x)>0,w(x)≠0 a.e.x∈[0,1],1/p,q,ω∈L1[0,1], and ω(x) changes sign on[-1,1].We obtain a priori bounds for possible non-real eigenvalues and a sufficient condition for the existence of non-real eigenvalues. |