Font Size: a A A

Spin exchange optical pumping of neon and its applications

Posted on:2010-01-02Degree:Ph.DType:Thesis
University:Princeton UniversityCandidate:Ghosh, Rajat KFull Text:PDF
GTID:2440390002488720Subject:Physics
Abstract/Summary:
Hyperpolarized noble gases are used in a variety of applications including medical diagnostic lung imaging, tests of fundamental symmetries, spin filters, atomic gyroscopes, and atomic magnetometers. Typically 3He is utilized because large 3He polarizations on the order of 80% can be achieved. This is accomplished by optically pumping an alkali vapour which polarizes a noble gas nucleus via spin exchange optical pumping.;One hyperpolarized noble gas application of particular importance is the K-3He co-magnetometer. Here, the alkali atoms optically pump a diamagnetic noble gas. The magnetic holding field for the alkali and noble gas is reduced until both species are brought into hybrid magnetic resonance. The co-magnetometer exhibits many useful attributes which make it ideal for tests of fundamental physics, such as insensitivity to magnetic fields.;The co-magnetometer would demonstrate increased sensitivity by replacing 3He with polarized 21Ne gas. Tests of CPT violation using co-magnetometers would be greatly improved if one utilizes polarized 21Ne gas. The sensitivity of the nuclear spin gyroscope is inversely proportional to the gyromagnetic ratio of the noble gas. Switching to neon would instigate an order of magnitude gain in sensitivity over 3He.;In order to realize these applications the interaction parameters of 21Ne with alkali metals must be measured. The spin-exchange cross section sigmase, and magnetic field enhancement factor kappa0 are unknown, and have only been theoretically calculated. There are no quantitative predictions of the neon-neon quadrupolar relaxation rate Gammaquad.;In this thesis I test the application of a K-3He co-magnetometer as a navigational gyroscope. I discuss the advantages of switching the buffer gas to 21Ne. I discuss the feasibility of utilizing polarized 21Ne for operation in a co-magnetometer, and construct a prototype 21Ne co-magnetometer. I investigate polarizing 21Ne with optical pumping via spin exchange collisions and measure the spin exchange rate coefficient of K and Rb with Ne to be 2.9 x 10-20cm 3/s and 0.81 x 10-19cm3/s. We measure the magnetic field enhancement factor kappa0 to be 30.8 +/- 2.7, and 35.7 +/- 3.7 for the K-Ne, and the Rb-Ne pair. We measure the quadrupolar relaxation coefficient to be 214 +/- 10 Amagat˙s. Furthermore the spin destruction cross section of Rb, and K with 21 Ne is measured to be 1.9 x 10-23cm2 and 1.1 x 10-23cm2.
Keywords/Search Tags:Spin, Noble gas, Optical pumping
Related items