Font Size: a A A

Epitaxial growth and properties of zinc oxide thin films on silicon substrates

Posted on:2011-03-18Degree:Ph.DType:Thesis
University:University of MichiganCandidate:Guo, WeiFull Text:PDF
GTID:2440390002952625Subject:Engineering
Abstract/Summary:
ZnO is an attractive material for promising applications in short wavelength optoelectronic devices because of its wide band gap and large exciton binding energy at room temperature (RT). This dissertation is devoted to the development of high quality, single-crystalline ZnO-based light-emitting devices on Si substrates, involving thin film synthesis by pulsed laser deposition, structure-property characterization, prototype device fabrication, strain engineering of thick films, and p-type doping with antimony (Sb).ZnO epitaxy with exceptional quality was achieved on (111) Si substrates for the advantages of inexpensive large wafers, mature device technologies, and multifunctional device integration. Epitaxial bixbyite oxides M2O3 (M=Sc, Lu, Gd) were originally employed as the buffer layer between ZnO and Si. The single-crystalline ZnO films has superior structural, electrical, and optical qualities than all previous reports of ZnO on Si, such as narrow o-rocking curves, low dislocation densities, high electron mobilities at RT, and comparable photoluminescence characteristics to those of ZnO single crystal. The epitaxial orientation relationship, intrinsic donors, microstructural defects, and residual strain of the films were investigated. Prototype n-ZnO/ M2O3/p-Si devices were constructed, and ZnO near-band-edge emission was observed in electroluminescence at RT. Strain engineering of thick films by insertion of low-temperature grown ZnO interlayers was performed to improve the cracking critical thickness to &ge2 mum.Reliable ZnO p-type doping using large-size-mismatched Sb dopant was achieved for the films grown on both (0001) Al2O 3 and (100) Si substrates, with a resistivity of 4.2-60 O cm, a Hall mobility of 0.5-7.7 cm2/V s, and a hole concentration of 3.2x1016-2.2x1017 cm-3 . The origin of p-type conductivity was elucidated from conjugated effects of oxygen-rich growth condition, adequate doping concentration, and dislocation-facilitated formation of complex acceptors of SbZn-2V Zn. The thermal activation energy and the optical ionization energy of the acceptor are estimated 115+/-5 meV and 158+/-7 meV, respectively.
Keywords/Search Tags:Films, Zno, Epitaxial, Substrates
Related items