Font Size: a A A

Nonlinear Phenomena of Plasma Waves in a Kinetic Regime: Frequency Shifts, Packets, and Transverse Localization

Posted on:2011-04-19Degree:Ph.DType:Thesis
University:University of California, Los AngelesCandidate:Fahlen, Jay EdwardFull Text:PDF
GTID:2440390002956794Subject:Engineering
Abstract/Summary:
The generation and propagation of nonlinear plasma waves is studied using particle-in-cell (PIC) simulations. We concentrate on regimes of interest to inertial fusion and space physics in which wave-particle interactions are important. Experiments soon to be performed at the National Ignition Facility require the understanding and control of stimulated Raman scattering (SRS) for their success. The SRS instability occurs when an incident laser decays into a backscattered light wave and an electron plasma wave. Recent computer simulations of SRS indicate that the daughter plasma waves have finite longitudinal and transverse extent and that they reach large amplitudes. The nonlinear behavior of such waves determines the growth, saturation, and recurrence of SRS. However, little attention has been paid to the behavior of plasma waves having these properties, and their study in SRS simulations is complicated by the large-amplitude light waves associated with the instability. Most theory and simulation work on SRS and its daughter plasma waves has been limited to infinite plane waves, often in the one-dimension limit. This thesis therefore studies isolated electron plasma waves over a wide range of parameters in one and multiple dimensions using PIC simulations. The simulations are performed with the goal of understanding the wave's behavior for parameters relevant to SRS, but the normalized parameters have general applicability to a range of densities and temperatures. Accordingly, an external ponderomotive driver generates traveling waves, driving them either continuously to study their peak amplitude and saturation mechanisms, or impulsively to study their propagation. Several novel effects are identified and characterized, including nonlinear resonance for driven waves, wave packet etching for finite-length waves, and localization and local damping for finite-width waves. Finite-length wave packets are found to erode away at a constant rate due to particle trapping at the rear edge, and a simple physical model is presented that accurately predicts the rate over a wide range of amplitudes and wavelengths. In multiple dimensions, finite width waves are shown to damp along their sides as resonant particles enter from outside the wave and trap. This local damping leads to the localization of a wave around its center. These effects, among others, are related to SRS saturation and behavior when appropriate.
Keywords/Search Tags:Waves, SRS, Nonlinear, Simulations, Behavior
Related items