Font Size: a A A

Thermoelectricity in strontium titanate

Posted on:2010-10-30Degree:Ph.DType:Thesis
University:University of California, BerkeleyCandidate:Scullin, Matthew LeoFull Text:PDF
GTID:2441390002474732Subject:Engineering
Abstract/Summary:
This dissertation treats the synthesis, experimental characterization, thermoelectric properties, potential applications of, and theoretical basis for strontium titanate thermoelectric materials. It is found that doubly-doped strontium titanate, Sr1-xLaxTiO3-d is an efficient n-type thermoelectric material, yielding a dimensionless thermoelectric figure of merit zT higher than other oxides and among the highest of any thermoelectric material in general. The improvement in thermoelectric efficiency of this material over other oxides is attributed in large part to the oxygen vacancy, which increases the electronic effective mass m* and in turn thermopower, increases electrical conductivity through donating electrons, and decreases lattice thermal conductivity. Through proper selection of La and oxygen vacancy doping, m* can be tuned in the material in the range of 2-20 me and thermal conductivity reduced by over a factor of three compared to stoichiometric SrTiO3. The potential applications of thin-film thermoelectrics in energy conversion are explored. In addition, the remarkable oxygen reduction of SrTiO3 single-crystal substrates is reported as resulting from pulsed laser deposition growth of oxide thin-films on their surfaces.
Keywords/Search Tags:Thermoelectric, Strontium, Material
Related items