Font Size: a A A

Investigations on structural and multiferroic properties of artificially engineered lead zirconate titanate-cobalt iron oxide layered nanostructures

Posted on:2010-01-21Degree:Ph.DType:Thesis
University:University of Puerto Rico, Rio Piedras (Puerto Rico)Candidate:Ortega Achury, Nora PatriciaFull Text:PDF
GTID:2441390002480482Subject:Chemistry
Abstract/Summary:
Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic, electric, and ferroelastic ordering, have drawn increasing interest due to their multi-functionality for a variety of device applications. Since, very rare single phase materials exist in nature this kind of properties, an intensive research activity is being pursued towards the development of new engineered materials with strong magneto-electric (ME) coupling. In the present investigation, we have fabricated polycrystalline and highly oriented PbZr0.53,Ti0.47O3--CoFe 2O4 (PZT/CFO) artificially multilayers (MLs) engineered nanostructures thin films which were grown on Pt/TiO2/SiO2/Si and La 0.5Sr0.5CoO3 (LSCO) coated (001) MgO substrates respectively. using the pulsed laser deposition technique. The effect of various PZT/CFO sandwich configurations having 3, 5, and 9 layers, while maintaining similar total PZT and CFO thickness, has been systematically investigated. The first part of this thesis is devoted to the analysis of structural and microstructure properties of the PZT/CFO MLs. X-ray diffraction (XRD) and micro Raman analysis revealed that PZT and CFO were in the perovskite and spinel phases respectively in the all layered nanostructure, without any intermediate phase. The TEM and STEM line scan of the ML thin films showed that the layered structure was maintained with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase, however better interface was observed in highly oriented films. Second part of this dissertation was dedicated to study of the dielectric, impedance, modulus, and conductivity spectroscopies. These measurements were carried out over a wide range of temperatures (100 K to 600 K) and frequencies (100 Hz to 1 MHz) to investigate the grain and grain boundary effects on electrical properties of MLs. The temperature dependent dielectric and loss tangent illustrated step-like behavior and relaxation peaks near the step-up characteristic respectively. The Cole-Cole plots indicate that the most of the dielectric response came from the bulk (grains) MLs below 300 K, whereas grain boundaries and electrode-MLs effects prominent at elevated temperature. The dielectric loss relaxation peaks shifted to higher frequency side with increase in temperature, finally above 300 K, it went out experimental frequency window. Our Cole-Cole fitting of dielectric loss spectra indicated marked deviation from the ideal Debye type of relaxation which is more prominent at elevated temperature. Master modulus spectra support the observation from impedance spectra, it also indicate that the difference between C g and Cgb are higher compared to polycrystalline MLs indicating less effects of grain boundary in highly oriented MLs. We have explained these electrical properties of MLs by Maxwell-Wagner type contributions arising from the interfacial charge at the interface of the MLs structure. Three different types of frequency dependent conduction process were observed at elevated temperature (>300 K), which well fitted with the double power law, sigma(o) = sigma(0) + A 1on1 + A 2on2, it indicates conduction at: Low frequency (<1 kHz) may be due to long range ordering (frequency independent), mid frequency (<10 kHz) may be due to short range hopping, and high frequency (<1 MHz) due to the localized relaxation hopping mechanism. The last part of the thesis is devoted to the study of the multiferroic and magnetoelectric properties of the ML thin films. Both polycrystalline and highly oriented films showed well saturated ferroelectric and ferromagnetic hysteresis loops at room temperature. Temperature dependence of ferroelectric properties showed that polarization slowly decreases from 300 K to 200 K, with complete collapse of polarization at ∼ 100 K, but there was complete recovery of the polarization during heating, which was repeatable over many different experiments. At the same time, in the same temperature interval the remanent magnetization of the MLs showed slow enhancement in the magnitude till 200 K with three fold increase at 100 K compared to room temperature. This enhancement in remanent magnetization and decrease in remanent ferroelectric polarization on lowering the temperature indicate temperature dependent dynamic switching of ferroelectric polarization. Frequencies and temperatures dependence of the ferroelectric hysteresis loop showed weak frequency dependence for highly oriented MLs, while significant dependence was observed for polycrystalline MLs. The fatigue test showed almost 0-20% deterioration in polarization. The fatigue and strong temperature and frequency dependent magneto-electric coupling suggest the utility of MLs for Dynamic Magneto-Electric Random Access Memory (DMERAM) and magnetic field sensor devices.
Keywords/Search Tags:Mls, Temperature, Highly oriented, Frequency, Engineered, Layered, Dependent
Related items