Font Size: a A A

Effect of Pore Structure and Chemistry on the Performance of Activated Oil Sands Petroleum Coke Electrodes for use in Electrochemical Double-Layer Capacitor

Posted on:2018-03-08Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Zuliani, Jocelyn EllenFull Text:PDF
GTID:2441390002495980Subject:Chemical Engineering
Abstract/Summary:
Electrical energy storage is a limiting barrier to widespread usage and commercialization of sustainable and renewable energy sources, such as wind and solar energy, as well as integration of electric vehicles. Electrochemical double-layer capacitors (EDLCs) are a promising energy storage technology that offers the benefits of high power density, long cycle life, rapid charging rates, and moderate energy density. The energy storage mechanism of EDLCs is physical ion adsorption on the surface of porous carbon electrodes. This thesis is an investigation of three different sections relating to EDLCs: 1) techniques to properly characterize novel porous carbon electrode materials, 2) investigation of activated oil sands petroleum coke (APC) as the electrode material for EDLCs, and 3) a systematic study of the effects of porous carbon structure and chemistry on EDLC performance. In the first section, it was shown that variations in operating conditions and testing techniques can lead to discrepancies in measured and reported capacitance. Therefore, it was concluded that a standardized approach is necessary in order to properly compare different porous carbon electrodes. In the second section, APC was investigated as a novel electrode material for EDLCs. PetCoke is a carbon dense material that can be activated with potassium hydroxide to generate high surface area porous carbon materials. These materials show promising electrochemical performance in EDLCs, with capacitance values up to 400 Fg-1 in 4M potassium hydroxide aqueous electrolytes, depending on the operating conditions. Additionally, the power density of these materials is comparable to that of other carbon nanomaterials, which are more costly and challenging to produce. Finally, the third section investigates the relationship between measured capacitance, and carbon macrostructure, meso-structure, microstructure, and oxygen content. In each of these studies, the desired parameter was varied, while all others (surface area, pore size, chemistry) were maintained constant. Through this systematic approach, this thesis investigates and quantifies the relationship between EDLC performance and important characteristic parameters through isolation of each individual parameter. By understanding the key structural and chemical features that improve EDLC performance, focus can be placed on engineering a sustainable and economic porous carbon material that has these desired features.
Keywords/Search Tags:Performance, Porous carbon, Energy storage, Activated, Chemistry, Electrochemical, Electrode, Material
Related items