Font Size: a A A

Thermo-stoichiometric behavior of aluminum-nickel nanoheater particles fabricated by galvanic replacement reaction

Posted on:2011-09-14Degree:M.S.CType:Thesis
University:University of Massachusetts LowellCandidate:Buckley, Jacqueline LFull Text:PDF
GTID:2441390002950070Subject:Engineering
Abstract/Summary:
Al-Ni reactive nano-structures are gaining interest for various applications in aerospace, nano-manufacturing, and biomedical fields. However, nano-material behavior can vary from macro-scale. There has been no systematic study of Al-Ni exothermic reaction and intermetallic formation for nano-scale reactants. Therefore, this study aims to investigate deviations from the established Al-Ni phase diagram, with the premise that the intermetallic formation temperatures are expected to be lower for nano-reactants due to higher surface energy. Additionally, it is important to gain better understanding and control of the galvanic replacement reaction (GRR) fabrication method, which, in terms of producing Al-Ni bi-metallic nanoparticles, is a completely novel scheme. With an adapted phase diagram, intermetallic product and heat output of nanoparticles from any given stage of GRR process can be predicted. Al-Ni nanoparticles having ignitable Al-Ni ratios were fabricated via GRR method. Effects of composition and temperature on intermetallic formation were studied by in-situ XRD analysis. Effects of environment and heating rate on the Al-Ni exothermic reaction were also investigated.
Keywords/Search Tags:Al-ni, Reaction
Related items