Font Size: a A A

Mechanistic studies on the electrochemistry of proton coupled electron transfer and the influence of hydrogen bonding

Posted on:2011-08-18Degree:Ph.DType:Thesis
University:Virginia Commonwealth UniversityCandidate:Alligrant, Timothy MFull Text:PDF
GTID:2441390002959553Subject:Chemistry
Abstract/Summary:
This research has investigated proton-coupled electron transfer (PCET) of quinone/hydroquinone and other simple organic PCET species for the purpose of furthering the knowledge of the thermodynamic and kinetic effects due to reduction and oxidation of such systems. Each of these systems were studied involving the addition of various acid/base chemistries to influence the thermodynamics and kinetics upon electron transfer. It is the expectation that the advancement of the knowledge of acid/base catalysis in electrochemistry gleaned from these studies might be applied in fuel cell research, chemical synthesis, the study of enzymes within biological systems or to simply advance the knowledge of acid/base catalysis in electrochemistry.The addition of amines (pyridine, triethylamine and diisopropylethylamine) to QH2's in acetonitrile involved a thermodynamic shift of the voltammetric peaks of QH2 to more negative oxidation potentials. This effect equates to the oxidation of QH2 being thermodynamically more facile in the presence of amines. Conjugate acids were also added to quinone, which resulted in a shift of the reduction peaks to more positive potentials. To assist in the determination of the oxidation process, the six pKa's of the quinone nine-membered square scheme were determined. The observed oxidation process of the amines with the QH2's was determined to be a CEEC process. While the observed reduction process, due to the addition of the conjugate acids to quinone were found to proceed via an ECEC process without the influence of a hydrogen bond interaction between the conjugate acid and quinone.Addition of carboxylates (trifluoroacetate, benzoate and acetate) to QH2's in acetonitrile resulted in a similar thermodynamic shift to that found with addition of the amines. However, depending on the concentration of the added acetate and the QH2 being oxidized, either two or one oxidation peak(s) was found. Two acetate concentrations were studied, 10.0 mM and 30.0 mM acetate. From 1H-NMR spectra and diffusion measurements, addition of acetates to QH2 solutions causes the phenolic proton peak to shift from 6.35 ppm to as great as &sim11 ppm, while the measured diffusion coefficient decreases by as much as 40%, relative to the QH2 alone in deuterated acetonitrile (ACN- d3). From the phenolic proton peak shift caused by the titration of each of the acetates, either a 1:1 or 1:2 binding equation could be applied and the association constants could be determined.In order to understand the proton transfer process observed at 10.0 mM concentrations of acetate with 1,4-QH2 and also the transition from a hydrogen bond dominated oxidation to a proton transfer dominated oxidation, conjugate acids were added directly to QH2 and acetate solutions. The results of voltammetric and 1H-NMR studies were that addition of the conjugate acids effects a transition from a hydrogen bond oxidation to a proton transfer oxidation. The predominant oxidation species and proton acceptor under these conditions is the uncomplexed QH2 and the homoconjugate of the particular acetate being studied, respectively. Furthermore, voltammetry of QH2 in these solutions resembles that measured with the QH2's and added amines, as determined by scan rate analysis.In an attempt to understand a less intricate redox-active system under aqueous conditions, two viologen-like molecules were studied. These molecules, which involve a six-membered fence scheme reduction, were studied under buffered and unbuffered conditions. One of these molecules, N-methyl-4,4'-bipyridyl chloride (NMBC+), was observed to be reduced reversibly, while the other, 1-(4-pyridyl)pyridinium chloride (PPC+), involved irreversible reduction. The study of these molecules was accompanied by the study of a hypothetical four-membered square scheme redox system studied via digital simulations. In unbuffered solutions each species, both experimental and hypothetical, were observed to be reduced at either less negative (low pH) or more negative (high pH), depending on the formal potentials, pK a's of the particular species and solution pH. The presence of buffer components causes the voltammetric peaks to thermodynamically shift from a less negative potential (low pH buffer) to a more negative potential (high pH buffer). (Abstract shortened by UMI.)...
Keywords/Search Tags:Electron transfer, Proton, Hydrogen bond, QH2, Oxidation, Negative, Conjugate acids, Influence
Related items