Font Size: a A A

Synthesis and Characterization of Nano-Structure Metal Oxides and Peroxides Prepared by Laser Ablation in Liquids

Posted on:2011-08-31Degree:M.SType:Thesis
University:King Fahd University of Petroleum and Minerals (Saudi Arabia)Candidate:Drmosh, Qasem Ahmed QasemFull Text:PDF
GTID:2441390002969184Subject:Nanoscience
Abstract/Summary:
Pulsed laser ablation technique was applied for synthesize of ZnO, ZnO 2 and SnO2 nanostructure using metallic target in different liquids. For this purpose, a laser emitting pulsed UV radiations generated by the third harmonic of Nd:YAG (λ= 355 nm) was applied. For the synthesis of ZnO nanoparticles (NPs), a high-purity metallic plate of Zn was fixed at the bottom of a glass cell in the presence of deionized water and was irradiated at different laser energies (80- 100- 120) mJ per pulse. The average sizes and lattice parameters of ZnO produced by this method were estimated by X-ray diffraction (XRD).;ZnO nanoparticles were also produced by ablation of zinc target in the presence of deionized water mixed with two types of surfactants: cetyltrimethyl ammonium bromide (CTAB) and octaethylene glycol monododecyl (OGM). The results showed that the average grain sizes decreased from 38 nm in the case of deionized water to 27 nm and 19 nm in CTAB and OGM respectively. The PL emission in CTAB and OGM showed two peaks: the sharp UV emission at 380 nm and a broad visible peak ranging from 450 nm to 600 nm.;Zinc peroxide (ZnO2) nanoparticles having grain size less than 5 nm were also synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3 % hydrogen peroxide H2O2 for the first time. The effect of surfactants on the optical and structure of ZnO2 was studied by applying different spectroscopic techniques. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7 nm, 3.7 nm, 3.3 nm and 2.8 nm in pure H2O2; and H2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO2 nanoparticles prepared with and without surfactants showed characteristic peaks of ZnO2 absorption at 435-445 cm-1. FTIR spectrum also revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. Both FTIR and UV-Vis spectra showed a red shift in the presence of SDS and blue shift in presence of CTAB and OGM.;The effect of post annealing temperature on dry ZnO2 nanoparticles prepared by PLA technique of solid zinc target in 3% H2O2 was studied by variation of the annealing temperatures from 100 to 600 °C for 8 hours under 1 atmospheric pressure. The XRD showed the phase transition from ZnO2 to ZnO at 200 °C. Based on XRD data, both the average grain size and lattice parameters of ZnO increased by post annealing of ZnO2 higher than 200 °C. In contrast, the band gap of ZnO nanoparticles decreased when the annealing temperature increased. The average sizes were 5, 6, 9, 15 and 19 nm at 200, 300, 400, 500 and 600 °C respectively. The PL emission spectra for ZnO showed strong UV emission peaks in all samples. In addition, the UV emission peaks were shifted to longer wavelength (red shifting) as the annealing temperature increase from 200 to 600 °C. From the above findings, we concluded that the grain size, lattice parameters, PL and band gap were size dependent as predicted by theoretical studies. (Abstract shortened by UMI.).
Keywords/Search Tags:Laser ablation, Zno, Size, UV emission, Lattice parameters, OGM, Peroxide, CTAB
Related items