Font Size: a A A

High temperature silver-palladium-copper oxide air braze filler metal

Posted on:2008-06-29Degree:Ph.DType:Thesis
University:Washington State UniversityCandidate:Darsell, Jens TommyFull Text:PDF
GTID:2441390005450698Subject:Engineering
Abstract/Summary:
The Ag-CuO system is currently being investigated as the basis for an air braze filler metal alloy to be used in SOFC components. The system is of interest because unlike most braze alloys, it is capable of wetting a variety of ceramic materials while being applied in an air. This thesis work examined modification of Ag-CuO filler metal system by alloying with palladium to increase the use temperature of the resulting air braze alloy. Thermal analysis was performed to track changes in the solidus and liquidus temperatures for these alloys and determine equilibrium phase present as a function of temperature and composition. Sessile drop experiments were performed to investigate the effect of palladium addition on braze wetability. The influence of copper-oxide and palladium contents on brazed joint strength was characterized by a combination of four-point bend testing and fractography. From combined thermal analysis and quenched data it was found that both the liquidus and solidus increase with increasing palladium content, and the silver-rich miscibility gap boundary could be shifted by the addition of palladium. This was employed as a tool to study the effects of two-liquid phase formation on wetting behavior. In addition, a mass loss likely attributable to silver volatilization is observed in the Pd-modified filler metals when heated over ∼1100°C. As volatilization should be avoided, the ternary alloys should be limited to 15mol% Pd. It was found by sessile drop wetting experiments that there is a definitive change in wetting behavior that corresponds directly to the miscibility gap boundary for the Pd-Ag-CuO system. The first order transition tracks with changes in the miscibility gap boundary that can be induced by increasing palladium content. This is the first experimental evidence of critical point wetting behavior reported for a metal-oxide system and further confirms that critical point wetting theory is universal. Four-point bend testing and fractography of YSZ-YSZ joints brazed using binary and 5mol% Pd and 15mol% Pd ternary air braze alloys found that the specimens joined using binary Ag-2CuO compositions exhibited the highest average bend strength, 148+/-24MPa. In general increasing additions of palladium appeared to reduce room temperature bend strength. Increases in liquidus and solidus temperatures with palladium additions are expected to improve high temperature strength although this still needs to be verified.
Keywords/Search Tags:Air braze, Palladium, Filler metal, Temperature, Miscibility gap boundary, System, Strength
Related items