Font Size: a A A

Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

Posted on:2008-11-25Degree:Ph.DType:Thesis
University:Washington University in St. LouisCandidate:Van Horn, Brooke AngelaFull Text:PDF
GTID:2441390005464570Subject:Chemistry
Abstract/Summary:
Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials.; Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively.; With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also explored by both sequential and single-step approaches. The benefits of the characterization of intermediates in a functionalization sequence were then weighed against the corresponding challenges faced by the establishment of equilibria between coupled and uncoupled species in solution. Additionally, in this dissertation, the advantages of a single-step reaction for the construction of multi-functionalization are stressed. Finally, the synthesis and basic characterization of specific functional materials are highlighted with regard to the preparation of novel ligand-bearing graft and particulate nanostructures, decorated with poly(ethylene oxide), chromophores, fluorophores, and radio-labeled molecules, for potential use in diagnostic imaging and drug delivery.
Keywords/Search Tags:Materials, Poly, Reductive amination, Functional
Related items