Font Size: a A A

Germanium nanocrystals: Synthesis, characterization, and applications

Posted on:2007-09-26Degree:Ph.DType:Thesis
University:The University of New MexicoCandidate:Gerung, HenryFull Text:PDF
GTID:2441390005960882Subject:Engineering
Abstract/Summary:
The aim of this work was to demonstrate a simple synthesis route of Ge nanostructures (nanoparticles and nanowires), to characterize the physical and optical properties of Ge nanocrystal, and to demonstrate their biological and optoelectronics applications.{09}The appropriate organometallic Ge 2+ precursors for the synthesis of Ge nanocrystals were identified. These precursors were used to develop a simple route that produced high quality Ge nanocrystals in high yield under mild conditions without using potentially contaminating catalysts and forming byproducts. The particle size was varied from 1 to 10 nm, depending on the reaction parameters. The relatively low-temperature, low-pressure nanocrystal synthesis condition allowed the use of organic solvents and surfactants. We also demonstrated morphological control over Ge nanocrystals via Ge2+ precursor reactivity modification. During synthesis, the surfactants passivate the nanocrystal surface and minimize surface oxidation. This synthesis method allowed optical characterization of Ge nanocrystals decoupled from contamination and oxidation. When excited with photons, Ge nanoparticles exhibit quantum confinement effect in both infrared and ultraviolet regions, as well as optical nonlinearity by the presence of two-photon absorption. These free-standing Ge nanocrystals could be further become integral elements in various optoelectronic devices.; Herein, the production of water-soluble Ge nanoparticles was demonstrated as a proof of the effectiveness of our synthesis method. Addition of secondary layer surfactants such as cationic cetyltrimethylammonium bromide (CTAB) or functionalized polyethylene glycol (PEG), transforms the Ge nanoparticles to become water-soluble. The biocompatible, functionalized, water-soluble Ge nanoparticles were bound to extracellular receptors and also incorporated into the cells as a proof-of-concept demonstration for potential biomarker applications.; In expectation of forming a 3-D superlattice of Ge nanocrystals within a SiO2 matrix, the real-time monitoring of ordered mesoporous SiO 2 structure formation via evaporation induced self assembly was also conducted to understand the structural ordering inside the silica matrix. The mesoporous film was then used for in situ and real-time study of profile evolution during plasma etching using attenuated total reflection Fourier transform infrared spectroscopy. We envision that the patterned 3-D superlattice of Ge nanocrystals will lead to advanced materials applications, such as coherent phonon generator and high-sensitivity biosensor.
Keywords/Search Tags:Nanocrystals, Synthesis, Applications, Nanoparticles
Related items