Font Size: a A A

Control of jets in crossflow

Posted on:2011-02-08Degree:Ph.DType:Thesis
University:University of MinnesotaCandidate:Sau, RajesFull Text:PDF
GTID:2442390002451096Subject:Engineering
Abstract/Summary:PDF Full Text Request
We use direct numerical simulations to study control of jets in crossflow by axial pulsing. Our main idea is that pulsing generates vortex rings; the effect of pulsing on jets in crossflow can therefore be explained by studying the behavior of vortex rings in crossflow. A method is proposed that allows optimal values of pulsation frequency, modulation and energy to be estimated a priori. This is accomplished in the following three stages.;First, direct numerical simulation is used to study the mixing of a passive scalar by a vortex ring issuing from a nozzle into stationary fluid. Simulations are performed for a range of stroke ratios encompassing the formation number, and the effect of stroke ratio on entrainment, and mixing is examined. When the stroke ratio is greater than the formation number, the resulting vortex ring with trailing column of fluid is shown to be less effective, at mixing and entrainment. As the ring forms, ambient fluid is entrained radially into the ring from the region outside the nozzle exit. This entrainment stops once the ring forms, and is absent in the trailing column. The rate of change of scalar containing fluid is studied for its dependence on stroke ratio. This rate varies linearly with stroke ratio until the formation number, and falls below the linear curve for stroke ratios greater than the formation number. This behavior is explained by considering the entrainment to be a combination of that due to the leading vortex ring, and that due to the trailing column.;Next, direct numerical simulation is used to study the effect of crossflow on the dynamics, entrainment and mixing characteristics of vortex rings issuing from a circular nozzle. Three distinct regimes exist, depending on the velocity ratio and stroke ratio. Coherent vortex rings are not obtained at velocity ratios below approximately 2. At these low velocity ratios, the vorticity in the crossflow boundary layer inhibits roll--up of the nozzle boundary layer at the leading edge. As a result, a hairpin vortex forms instead of a vortex ring. For large stroke ratios and velocity ratio below 2, a series of hairpin vortices are shed downstream. The shedding is quite periodic for very low Reynolds numbers. For velocity ratios above 2, two regimes are obtained depending upon the stroke ratio. Lower stroke ratios yield a coherent asymmetric vortex ring, while higher stroke ratios yield an asymmetric vortex ring accompanied by a trailing column of vorticity. These two regimes are separated by a transition stroke ratio whose value decreases with decreasing velocity ratio.;Then, we study the mixing behavior of pulsed jets in crossflow using direct numerical simulations. The pulse is a square wave and the simulations consider several jet velocity ratios and pulse conditions. We study the effects of pulsing, and explain the wide range of optimal pulsing conditions found in experimental studies of the problem. Vortex rings in crossflow exhibit three distinct flow regimes depending on stroke ratio and ring velocity ratio. The simulations of pulsed transverse jets show that at high velocity ratios, optimal pulse conditions correspond to the transition of the vortex rings produced by pulsing between the different regimes. At low velocity ratios, optimal pulsing conditions are related to the natural timescale on which hairpin vortices form.;The thesis also discusses work towards the development of Large Eddy Simulation (LES) methodology to predict mixing in very high Reynolds number turbulent flows. We propose a novel estimation procedure to model the subgrid velocity for LES. The subgrid stress is obtained directly from the estimated subgrid velocity. The model coefficients for the subgrid velocity are obtained by imposing constraints on resulting ensemble-averaged subgrid dissipation and local subgrid kinetic energy. The subgrid dissipation may be obtained through either eddy-viscosity models or a new dynamic model for dissipation. The subgrid kinetic energy may be obtained either from the dynamic Yoshizawa model or a modeled transport equation. We also extend the estimation procedure to LES of passive scalar transport and propose an estimation model for subgrid scalar concentration. (Abstract shortened by UMI.)...
Keywords/Search Tags:Crossflow, Jets, Ratio, Subgrid, Direct numerical, Pulsing, Velocity, Vortex ring
PDF Full Text Request
Related items