Font Size: a A A

Aerodynamic shape optimization of three-dimensional gas turbine blade using differential evolution method

Posted on:2011-09-14Degree:M.SType:Thesis
University:The University of Texas at ArlingtonCandidate:Joshi, DarshakFull Text:PDF
GTID:2442390002453574Subject:Engineering
Abstract/Summary:
This paper outlines the aerodynamics shape optimization process of a 3D VKI gas turbine blade using Computational Fluid Dynamics (CFD) and differential evolution optimization method. The main objective of this work is to improve outlet total pressure for better aerodynamic performance. This benefit is achieved by optimizing the stacking line path of the turbine blade in 3D annular cascade for which higher exit total pressure is achieved. The optimization process starts with generating a 3D annular cascade with a boundary domain and meshing it using GAMBIT and is then solved in FLUENT using viscous flow analysis. The original stacking line is defined as a B --spline with its end points fixed and middle points free to move in translational direction. These middle points work as design variables whose position needs to be changed for improved exit total pressure which is a desired parameter. The turbine blade cascade is analyzed for only aerodynamic performance. The optimization analysis is an iterative process using a parallel computing system.;The shape optimization process runs iteratively with the CFD code Fluent and DE algorithm until the higher total pressure at outlet is achieved by optimizing the stacking line path the turbine blade in the annular cascade. Here the optimization process of the 3D turbine blade cascade is presented.
Keywords/Search Tags:Turbine blade, Optimization, Aerodynamic, 3D annular cascade, Differential evolution, Optimizing the stacking line path, Total pressure
Related items