Font Size: a A A

Dynamic Tensile, Flexural and Fracture Tests of Anisotropic Barre Granite

Posted on:2011-06-03Degree:Ph.DType:Thesis
University:University of Toronto (Canada)Candidate:Dai, FengFull Text:PDF
GTID:2442390002454734Subject:Engineering
Abstract/Summary:
Granitic rocks usually exhibit strongly anisotropy due to pre-existing microcracks induced by long-term geological loadings. The understanding of anisotropy in mechanical properties of rocks is critical to a variety of rock engineering applications. In this thesis, the anisotropy of tension-related failure parameters involving tensile strength, flexural strength and Mode-I fracture toughness/fracture energy of Barre granite is investigated under a wide range of loading rates.;To study the anisotropy of these properties, rock blocks are cored and labeled using the three principal directions of Barre granite to form six sample groups. For samples in the same orientation group, the measured strengths/toughness shows clear loading rate dependence. More importantly, a loading rate dependence of the strengths/toughness anisotropy of Barre granite has been first observed: the anisotropy diminishes with the increase of loading rate.;The reason for the strengths/toughness anisotropy can be understood with reference to the preferentially oriented microcracks sets; and the rate dependence of this anisotropy is qualitatively explained with the microcracks interaction. Two models abstracted from microscopic photographs are constructed to interpret the rate dependence of the fracture toughness anisotropy in terms of the crack/microcracks interaction. The experimentally observed rate dependence of the anisotropy is successfully reproduced.;Three sets of dynamic experimental methodologies have been developed using the modified split Hopkinson pressure bar system; Brazilian test to determine the tensile strength; semi-circular bend method to determine the flexural strength; and notched semi-circular bend method to determine the Mode-I fracture toughness and fracture energy. For all three tests, a simple quasi-static data analysis is employed to deduce the mechanical properties; the methodology is assessed critically against the isotropic Laurentian granite. It is shown that if dynamic force balance is achieved in SHPB, it is reasonable to use quasi-static formulas. The dynamic force balance is obtained by the pulse shaper technique.
Keywords/Search Tags:Dynamic, Barre granite, Anisotropy, Fracture, Rate dependence, Flexural, Tensile, Loading
Related items