Font Size: a A A

Structural aspects of the ribosome evolution and function

Posted on:2014-05-23Degree:Ph.DType:Thesis
University:Universite de Montreal (Canada)Candidate:Bokov, KonstantinFull Text:PDF
GTID:2450390005496526Subject:Bioinformatics
Abstract/Summary:
In the year 2000, the first high-resolution structures of the individual ribosomal subunits became available to the public. The following year, the X-ray structure of the complete bacterial ribosome was published. These major achievements opened a new era in studying the mechanisms of protein synthesis. From then on, it became possible to attribute different aspects of the ribosome function to particular elements of its tertiary structure. However, establishing the structure-function relationships is problematic due to the immense complexity of the ribosome structure. In other words, in order to make the crystallographic data on the ribosome tertiary structure really useful for understanding of how the ribosome functions, it must be thoroughly analyzed. Here, based on systematic analysis of the available X-ray conformations of the ribosome we have tried to resolve two fundamental problems of the ribosome biology: concerning (1) the nature of rearrangements in the ribosome that take place at different steps of its functional cycle, and (2) the reconstruction of the ribosome evolution from the RNA world to present time.;In the first project, we systematically compared the available structures of the ribosome and its subunits to identify rigid domains, which always have the same conformation, and flexible regions, where the conformation can vary from one ribosome structure to another. There were two known types of structural rearrangements whose mechanisms we wanted to understand: the ratchet-like motion and the so-called domain closure. The ratchet-like motion takes place during the ribosomal translocation and is roughly seen as a rotation of one subunit with respect to the other. The domain closure occurs in the small subunit and is associated with the cognate codon-anticodon recognition in the A-site.;Comparison of the available ribosome conformations revealed the detailed mechanisms of both rearrangements. Although the selection of the cognate amino-acyl-tRNA in the A-site and of the ribosomal translocation have never been thought to have anything in common, we demonstrate that the rearrangements in the ribosome structure associated with the first process repeat in reverse order the rearrangements associated with the second process. In other words, during the ribosome elongation cycle, the domain closure and the ratchet-like motion can be seen as a back-and-forth movement, which eventually returns the ribosome to the initial conformation.;In the second project, we attempted to reconstruct the evolution of the 23S rRNA from the RNA world to present time based on the presumption that the evolutionary expansion of this molecule proceeded though random insertions of relatively short regions into different regions of the polynucleotide chain. We developed criteria for integrity of the ribosome structure and presumed that during the evolutionary expansion, the ribosome structure always matched to these standards. For this, we specifically considered the A-minor interaction, a frequent arrangement in the rRNA structure consisting of a stack of unpaired adenosines tightly attached to a double helix. We presumed that in all A-minor interactions present in the ribosome, the double helix emerged before or at least simultaneously with the corresponding adenosine stack. The systematic application of this principle to the known tertiary structure of the 23S rRNA allowed us to elucidate in a step-vise manner the order in which different part of the modern 23S rRNA joined the structure.;Taken together, the two projects demonstrate the effectiveness of the systematic in-silico analysis of the ribosome tertiary structure and pave the way for future discoveries.
Keywords/Search Tags:Ribosome, Structure, 23S rrna, Evolution, Available
Related items