Laser Produced Plasmas as a Source of Ions, Protons and X-ray |
| Posted on:2015-01-28 | Degree:Ph.D | Type:Thesis |
| University:University College Dublin (Ireland) | Candidate:Stefanuik, Robert | Full Text:PDF |
| GTID:2450390005982604 | Subject:Plasma physics |
| Abstract/Summary: | PDF Full Text Request |
| The work presented in this thesis is primarily focused on the use of a laser produced plasma as a source of protons, ions and X-rays. It explores high impact applications of both high power ultrafast lasers and nanosecond lasers.;Section 1 gives a general introduction to the physics governing the experiments and the lasers in the following sections. Section 2 describes all the laser systems used in this thesis. Section 3 is covers two different experiments involving the generation of X-rays from a laser produced plasma.;Section 4 describes a laser accelerated proton experiment conducted in the Center for Plasma Research in Queens University Belfast, using the TARANIS laser system. In this experiment 13 MeV protons were accelerated from10 &mgr;m gold foil targets into a sample of BK-7 glass. The interaction of the protons with the glass were observed by taking spatially resolved images of the transient opacity induced by the protons interacting with the BK-7 Glass and an optical probe beam. These spatially resolved images are presented in Section 4.3.;Section 5 describes the refurbishment of the 1-m normal incidence VUV spectrometer. It describes the replacement of a photographic plate based detection system with a linear CCD array. The CCD array can detect the VUV radiation through a sodium salicylate phosphor coating which emits at 410 nm on interacting with VUV radiation. Different phosphors are compared in terms of sensitivity and ease of coating and the grounds for choosing sodium salicylate are explained. The adaptations to the spectrometer to use the linear CCD array are described and the details on calibrating the spectrometer are explained.;Finally, Section 6 describes a set of spectroscopic experiments which use the refurbished 1-m normal incidence spectrometer. First Section 6.2 describes a repeat of the photoabsorption of indium and indium plus which was conducted previously on the spectrometer. This was designed as a proof of principle of the working of the new phosphor based linear CCD array system. (Abstract shortened by UMI.). |
| Keywords/Search Tags: | Linear CCD array, Laser, Plasma, Protons, Section |
PDF Full Text Request |
Related items |