Font Size: a A A

Nanomaterials made of earth-abundant elements for photovoltaics

Posted on:2014-09-16Degree:M.ChemType:Thesis
University:Colorado School of MinesCandidate:Molk, DoreenFull Text:PDF
GTID:2451390005989655Subject:Alternative Energy
Abstract/Summary:
Of the many types of solar cells currently under exploration, multijunction photovoltaics (MJPVs) are of the most interest due to their record-breaking solar energy conversion efficiencies (over 40%). However, MJPV device fabrication is expensive because they require a costly synthesis technique that utilizes rare elements such as gallium, arsenic, and indium. To resolve this issue, our efforts have been focused on the replacement of the thin-film materials currently employed in MJPVs with a more earth-abundant alternative, Zn-alloyed iron pyrite (ZnxFe(1-x)S2). The synthesis of ZnxFe(1-x)S2 nanoparticles is of particular interest because a nanoparticle 'ink' can be inserted into a roll-to-roll processor, which is an inexpensive technique of creating defect-free thin-films for electronics.;The first part of this work explores the synthesis of Zn-alloyed iron pyrite nanoparticles via the modification of a solvothermal method from the literature. The nanoparticles generated using this method at first indicated zinc-alloying was successful; yet, further studies into the electronic structure of the particles necessitated the addition of a spin-purification step to ensure only highly soluble particles remained for spin-coating deposition. Compositional and structural analysis of the particles that remained after the additional spin-purification step showed evidence of both the ZnS and FeS2 phases.;The second part of this work focuses on the development of an alternative method of generating iron pyrite nanoparticles, which would also eventually be used for zinc-alloying. The two approaches focused on are a hydrothermal method in an acid-digestion bomb and a non-injection solvothermal method in an inert environment. The synthesized particles using these methods were phase-pure and did not contain any detectable quantity of other iron sulfides.
Keywords/Search Tags:Method, Particles
Related items