Font Size: a A A

Interparticle force based methodology for prediction of cohesive powder flow properties

Posted on:2006-10-28Degree:Ph.DType:Thesis
University:University of FloridaCandidate:Esayanur, Madhavan Sujatha SarmaFull Text:PDF
GTID:2451390005992247Subject:Engineering
Abstract/Summary:
The transport and handling of powders are key areas in the process industry that have a direct impact on the efficiency and/or the quality of the finished product. A lack of fundamental understanding of powder flow properties as a function of operating variables such as relative humidity, and particle size, leading to problems such as arching, rat-holing and segregation, is one the main causes for unscheduled down times in plant operation and loss of billions of dollars in revenues. Most of the current design strategies and characterization techniques for industrial powders are based on a continuum approach similar to the field of soil mechanics. Due to an increase in complexity of the synthesis process and reduction in size of powders to the nanoscale, the surface properties and inter particle forces play a significant role in determining the flow characteristics. The use of ensemble techniques such as direct shear testing to characterize powders are no longer adequate due to lack of understanding of the changes in the property of powders as a function of the major operating variables such as relative humidity, temperature etc. New instrumentation or techniques need to be developed to reliably characterize powder flow behavior. Simultaneously, scalability of the current models to predict powder flow needs to be revisited.; Specifically, this study focuses on the development of an inter particle force based model for predicting the unconfined yield strength of cohesive powders. To understand the role of interparticle forces in determining the strength of cohesive powders, the particle scale interactions were characterized using Atomic Force Microscopy (AFM), contact angle, surface tension, and coefficient of friction. The bulk scale properties such as unconfined yield strength, packing structure, and size of the shear zone were also investigated. It was determined that an interparticle force based model incorporating the effect of particle size and packing structure leads to a reasonable prediction of the bulk strength of cohesive powders. Additionally, the role of particle size distribution and liquid distribution in the powder was considered. The findings of this research should be helpful to the practitioners in providing reliable input for the design of cohesive powder flow and handling equipment.
Keywords/Search Tags:Powder, Cohesive, Particle, Force
Related items