Font Size: a A A

Investigating the interfacial dynamics of thin films

Posted on:2006-05-18Degree:Ph.DType:Thesis
University:The University of ChicagoCandidate:Rosenbaum, Aaron WFull Text:PDF
GTID:2451390005992340Subject:Chemistry
Abstract/Summary:PDF Full Text Request
This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies.; Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode.; Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases.; Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and surface specific nature of helium atom scattering allows for a deft study of the relationship between surface motion and the glass transition temperature. An added parameter in this complex organic system is the film thickness. The confinement effects and enhanced surface displacement were examined as a function of the thermal attenuation of both inelastic and elastic helium atom scattering. The Debye-Waller factor for these thin films of PMMA is similar to the low-density alkanethiol self-assembled monolayers discussed earlier.
Keywords/Search Tags:Thin films, Dynamics, Surface, Helium atom scattering, SF6
PDF Full Text Request
Related items