Font Size: a A A

The Estimation of Mechanical Strengths of Thin Films Based on Material Properties

Posted on:2014-01-03Degree:M.SType:Thesis
University:University of California, DavisCandidate:Neufeld, Amanda JFull Text:PDF
GTID:2451390008451607Subject:Engineering
Abstract/Summary:
It has been shown that the mechanical properties of thin films tend to differ from their bulk counterparts. Specifically, the bulge and microtensile testing of thin films used in MEMS have revealed that these films demonstrate an inverse relationship between thickness and strength. A film dimension is not a material property, but it evidently does affect the mechanical performance of materials at very small thicknesses. A hypothetical explanation for this phenomenon is that as the thickness dimension of the film decreases, it is statistically less likely that imperfections exist in the material. It would require a very small thickness (or volume) to limit imperfections in a material, which is why this phenomenon is seen in films with thicknesses on the order of 100 nm to a few microns. Another hypothesized explanation is that the surface tension that exists in bulk material also exists in thin films but has a greater impact at such a small scale. The goal of this research is to identify a theoretical prediction of the strength of thin films based on its microstructural properties such as grain size and film thickness. This would minimize the need for expensive and complicated tests such as the bulge and microtensile tests. In this research, data was collected from the bulge and microtensile testing of copper, aluminum, gold, and polysilicon free-standing thin films. Statistical testing of this data revealed a definitive inverse relationship between thickness and strength, as well as between grain size and strength, as expected. However, due to a lack of a standardized method for either test, there were significant variations in the data. This research compares and analyzes the methods used by other researchers to develop a suggested set of instructions for a standardized bulge test and standardized microtensile test. The most important parameters to be controlled in each test were found to be strain rate, temperature, film deposition method, film length, and strain measurement.
Keywords/Search Tags:Thin films, Mechanical, Material, Strength, Test
Related items