Font Size: a A A

In vitro modulation of meniscus biosynthesis: A basis for understanding cellular response to physiologically relevant stimuli

Posted on:2006-03-20Degree:Ph.DType:Thesis
University:Georgia Institute of TechnologyCandidate:Imler, Stacy MarieFull Text:PDF
GTID:2451390008469984Subject:Engineering
Abstract/Summary:
The meniscus is a soft, fibrocartilaginous tissue critical for the maintenance of normal knee biomechanics, providing shock absorbance and overall joint lubrication and stability. The adult tissue is highly avascu1ar with a poor autonomous repair capacity in response to injury. Despite the estimated 850,000 arthroscopic surgeries performed per year to repair torn menisci and the increasing evidence showing a high incidence of meniscal degeneration during very early stages of osteoarthritis, little is currently known of the responses of meniscal fibrochondrocytes to physiological stimuli. Therefore, this work explored the responses of meniscal fibrochondrocytes to exogenous biomechanical and biochemical stimuli in an effort to better understand the sensitivity of these cells in their native tissue matrix as well as in a 3-D scaffold environment.; Using the immature bovine model, the changes in biosynthesis of fibrochondrocytes in tissue explants and in an agarose scaffold due to unconfined oscillatory compression were explored. This biomechanical stimulus, previously identified to stimulate matrix production of chondrocytes of articular cartilage, stimulated total protein synthesis in both culture environments. In contrast, the synthesis of proteoglycans, matrix components important in mechanical stiffness and hydration of the tissue, was not affected by these compression protocols. However, the use of a biochemical stimulus in the form of anabolic cytokines significantly enhanced both protein and proteoglycan synthesis as a function of culture environment as well as type of cytokine used. The superposition of oscillatory compression in addition to the use of these potent biochemical stimulators, insulin-like growth factor-I or transforming growth factor-beta 1, did not further enhance matrix synthesis of fibrochondrocytes in agarose culture, suggesting an insensitivity of the fibrochondrocytes to biomechanical stimuli during early stages of matrix maturation within the agarose scaffold. As a combination of biomechanical and biochemical stimuli are responsible for directing the development, maintenance, and repair of the tissue, these findings aid in understanding fibrocartilage maintenance through studying responses in a tissue explant model. Additionally, studying agarose scaffolds aid in the understanding fibrocartilage development and deposition of a de novo matrix.
Keywords/Search Tags:Understanding, Tissue, Matrix, Synthesis, Stimuli, Agarose
Related items