Font Size: a A A

Catalysis and Sonocatalysis for the Synthesis of Biofuels

Posted on:2013-06-25Degree:Ph.DType:Thesis
University:North Carolina Agricultural and Technical State UniversityCandidate:Deshmane, Vishwanath GanpatFull Text:PDF
GTID:2451390008485187Subject:Engineering
Abstract/Summary:
The goal of this study was to investigate the synthesis of biofuels from edible and non-edible sources using commercially available and laboratory synthesized heterogeneous catalysts with and without the aid of ultrasound. The transesterification of soybean oil using calcium methoxide as solid base catalyst and the process parameters affecting the yield of biodiesel such as the catalyst concentration, methanol/oil molar ratio and the reaction temperature were investigated in detail. The kinetics of this process with and without ultrasound was also evaluated using a previously reported kinetic and mass transfer model for heterogeneous systems. Nanocrystalline mesoporous ZrO 2 with high surface area and thermal stability was synthesized using ethylene diamine as precipitating agent. Sulfonation of obtained Zr(OH) 2 at different digestion times was carried out using sulfuric acid and chlorosulfonic acid as the sulfonating agents and the effects of process parameters including digestion time, pH, precursor concentration and calcination temperature on structural, textural and catalytic properties were studied. Parametric and optimization (Taguchi statistical methodology) studies were carried out to evaluate the effects of cellulase, cellobiase, cellulose concentration and ultrasonic power on the intensification of cellulose hydrolysis to glucose. The catalysts and cellulose were characterized by using BET, NH3-TPD, XRD, SEM, TGA-DSC, EDX and FTIR. The results of these studies suggest that synthesis of biofuels can be improved by heterogeneous catalysts and ultrasound with potential reduction in production costs compared with conventional methods.
Keywords/Search Tags:Synthesis, Using
Related items
Green chemistry in pyrrole synthesis. I. Solvent effect in Barton-Zard pyrrole synthesis: An improved synthesis of 3,4-dialkyl-1H-pyrrole-2-carboxylates. II. A novel route for the synthesis of pharmaceutically important pyrrole derivatives
Part I: Design, synthesis, and reactivity of 1-hydrazinodienes for use in organic synthesis Part II: Studies toward a synthesis of the antibiotic platensimycin
Manganese(III)-based oxidative cyclizations: Formal synthesis of 15-acetoxypallescensin A. Synthesis of hindered guanidines. Completion of the total synthesis of martinellic acid
Synthesis, Characterization And Luminescence Properties Of Environmental Functional Material β-NaYF4 Doped With Rare Earth
Part I: The total synthesis of (+/-)-securinine and (+/-)-allosecurinine and synthetic strategies for a second generation synthesis of the securinega alkaloids and Part II: The use of (+)-K252a in the semi-synthesis of indolocarbazole natural products and
New methods and strategies for heterocycle synthesis: Progress toward the total synthesis of upenamide and the total synthesis of (+)-5-epiindolizidine 167B and indolizidine 223AB
Synthesis of side chain-modified iodothyronines. Synthesis and structure-activity relationships (SARS) of galanthamine derivatives. Total synthesis of (+)-valyldetoxinine. Synthesis and mechanism of cyclic acetal and ketal formation in pentono-1,4-lactone
The application of asymmetric catalysis to the synthesis of natural products: A total synthesis of (-)-tubulosine, progress towards a total synthesis of (+)-reserpine, and a total synthesis of (+)-peloruside A
Cyclobutanes in organic synthesis: Lewis acid-promoted ketene-alkene [2+2] cycloadditions, total synthesis of gracilioether F, and collaborative total synthesis of hippolachnin A
10 A ring-closing metathesis/Diels-Alder approach to the synthesis of the eunicellin diterpenes: Application to the total synthesis of ophirin B and partial synthesis of astrogorgin