Font Size: a A A

Using environmental chemistry technologies for the removal of arsenic from drinking water, and fat and oil based phase change materials for thermal energy storage

Posted on:2005-01-26Degree:Ph.DType:Thesis
University:University of Missouri - ColumbiaCandidate:Sutterlin, William RFull Text:PDF
GTID:2451390008491461Subject:Chemistry
Abstract/Summary:
The first four chapters of this dissertation involve the removal of arsenic from drinking water. Various forms of a macroporous char prepared by partial gasification of subbituminous coal were studied for removal of arsenic(V) and arsenic(III) from water. In increasing order of effectiveness for arsenic(V) removal were untreated char < acid-washed char < char impregnated with iron(III) and gasified < char impregnated with FeS < char impregnated with iron(III) hydroxide < char coated with zerovalent iron < char impregnated with iron(III) oxide. A mass of 10 g of iron(III) oxide char removed arsenic(V) and arsenic(III) from 10,000 mL of water containing 500 micrograms/L of arsenic to levels below 10 micrograms/L. The capacity of the solid to remove arsenic was significantly diminished in water containing 4 mg/L of phosphate. An electrical current passed over 4 g of iron(III) oxide char in a column enabled removal of arsenic(III) from 14,000 mL of 500 micrograms/L arsenic(III) to below 10 micrograms/liter and at significantly higher flow rates than could be employed without electrolysis.; The fifth chapter in this dissertation focused on the retention of organics onto a char/concrete pellet. A mixture of naphthalene, pentachlorophenol, biphenyl, toluene, tetrachloroethane, and chlorobenzene were impregnated into a loose granular char, a char/concrete pellet and a sand/concrete pellet. The results showed that the char/concrete pellet had significant advantages over the other forms.; Chapters 6--9 focus on phase change materials (PCMs). These PCMs are made from fats and oils. PCMs are perhaps the only proven method that can provide near 100% thermal energy storage. In chapter 7 a novel HPLC method was developed that could provide quantification and qualification of the resulting products formed after PCM synthesis. In chapter 8 thermal cycling studies were conducted on the fat and oil based PCMs. These thermal cycle demonstrated that these PCMs were capable of going through a multitude of freeze and melt processes with little to no degradation if the appropriate preservative is used. Finally in chapter 9 the PCM is incorporated into a simulated 100 th scale house. A traditional freon based evaporator is used to freeze the PCM at night during electrical-off-peak hours. During the peak-load of the day the evaporator is turned off and the PCM provides the cooling for the house.
Keywords/Search Tags:Arsenic, Water, Removal, PCM, Thermal, Iii, Chapter
Related items