Font Size: a A A

Titania-alumina aerogel materials for degradation of rhodamine B dye: Impact of particle size of titania

Posted on:2017-05-08Degree:M.SType:Thesis
University:University of South DakotaCandidate:Shrestha, SunavFull Text:PDF
GTID:2451390008493023Subject:Nanotechnology
Abstract/Summary:
Disposal of pollutants, mainly organic dyes from textile industries are the primary sources of water pollution in developing countries, and often leading to scarcity of clean water. These dyes can undergo further oxidation and form several toxic compounds, which possess threat to the water ecosystem. It is therefore necessary to remove these organics from effluents for a clean environment. Among the various methods, Advanced Oxidation Processes (AOPs) called heterogeneous photocatalysis is considered as an effective method for the removal of organics from water sources. In this regard, a set of titania-alumina (TiO2-Al2O3) mixed oxide materials were prepared by supercritical drying method and investigated towards the degradation of a model pollutant, rhodamine B (RhB). The physico-chemical properties of the synthesized materials were studied in detail using several techniques that include powder X-ray diffraction, nitrogen physisorption, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy (XPS). The Electrospray ionization-Mass spectroscopic (ESI-MS) studies were also carried out to confirm the degradation of the RhB by identifying its intermediate products. The results indicate that the particle size of the photoactive species, titania, was the key factor for effective photocatalytic degradation of the RhB dye over the titania-alumina mixed oxide materials.
Keywords/Search Tags:Materials, Degradation, Titania-alumina, Water
Related items