Font Size: a A A

Imprinting the surface of mesoporous aluminosilicates using organic structure-directing agents

Posted on:2005-10-09Degree:Ph.DType:Thesis
University:University of DelawareCandidate:Sawant, Kaveri RFull Text:PDF
GTID:2451390008498453Subject:Engineering
Abstract/Summary:
Combining the positive structural features of mesoporous materials and microporous zeolite aluminosilicates can lead to the synthesis and application of new materials useful for catalytic processes involving large organic reactant molecules. We used organic structure-directing agents (SDAs), typically used for the synthesis of zeolites, to imprint the surface of existing mesoporous materials to create novel materials with enhanced structural properties towards this aim: materials with large well-ordered pores allowing access to large reactants with strong accessible acid sites on the surface of the pores leading to stable and active catalysts.; We developed new protocols for incorporating tetrapropyl ammonium and N,N,N-trimethyl-1-adamantylammonium, SDAs used for the synthesis of the zeolites ZSM-5 (MFI) and MCM-22 (MWW) respectively, into the walls of the siliceous mesoporous material SBA-15 by using a combination of an organic solvent (glycerol) and water, to form novel porous materials. We studied the evolution of the modified pore structure of the materials by a battery of characterization techniques. Results indicate that the new materials have well-ordered pores with significantly larger mesopore diameters and structurally modified thinner, denser pore walls.; We carried out similar treatments and characterization on the aluminum containing form of SBA-15, Al-SBA-15, with high and low amounts of aluminum. Pair distribution function analysis was used to analyze the structural differences in the materials and catalytic test reactions such as cumene and n-hexane cracking to detect the presence of strong acid sites like the ones in ZSM-5. Results similar to the treatments on the all-silica materials, although promising, led to novel meso-micro aluminosilicate materials with limited increase in or no catalytic activity with reference to the test reactions employed. This led to the conclusion that the aluminum in the materials was merely a spectator and did not participate in the chemistry of the structural transformation of Al-SBA-15 by the treatments.
Keywords/Search Tags:Materials, Mesoporous, Structural, Organic, Surface
Related items