Font Size: a A A

Linking colloid deposit morphology and clogging: Insights by measurement of deposit fractal dimension

Posted on:2014-04-25Degree:M.SType:Thesis
University:University of Colorado at DenverCandidate:Roth, Eric JamesFull Text:PDF
GTID:2451390008950498Subject:Hydrology
Abstract/Summary:
Clogging is an important limitation to essentially any technology or environmental process involving flow in porous media. Examples include (1) groundwater remediation, (2) managed or natural aquifer recharge, (3) hydrocarbon reservoir damage, (4) head loss in water treatment filters, (5) fouling in porous media reactors, and (6) nutrient flow for plants or bacteria. Clogging, that is, a detrimental reduction in permeability, is a common theme in each of these examples. Clogging results from a number of mechanisms, including deposition of colloidal particles (such as clay minerals), which is the focus of this research.;Colloid deposits reduce porosity, which is recognized to play an important role in clogging, as expressed in the Kozeny-Carman equation. However, recent research has demonstrated that colloid deposit morphology is also a crucial variable in the clogging process. Accordingly, this thesis reports a series of laboratory experiments with the goal of quantifying deposit morphology as a fractal dimension, using an innovative technique based on static light scattering (SLS) in refractive index matched (RIM) porous media. For experiments conducted at constant flow, with constant influent suspension concentration, and initially clean porous media, results indicate that increased clogging is associated with colloid deposits having smaller fractal dimensions, that is, more dendritic and space-filling deposits. This result is consistent with previous research that quantified colloid deposit morphology using an empirical parameter.;Clogging by colloid deposits also provides insight into the more complex clogging mechanisms of bio clogging, mineralization, and bio mineralization. Although this line of work was originally motivated by problems of clogging in groundwater remediation, the methods used and the insight gained by correlating clogging with fractal dimension are expected to have relevance to other areas where flow in porous media overlaps with colloid science: Hydrogeology, petrology, water treatment, and chemical engineering.
Keywords/Search Tags:Clogging, Porous media, Colloid, Flow, Fractal
Related items