Font Size: a A A

The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

Posted on:2014-03-01Degree:Ph.DType:Thesis
University:North Carolina State UniversityCandidate:Abdelgawad, Abdelrahman MohamedFull Text:PDF
GTID:2451390008951149Subject:Chemistry
Abstract/Summary:
Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance.;To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs.;In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The antibacterial testing of the nanofiber mats were performed according to AATCC-100 protocol. PVA/CS/CIA system was found to have superior antibacterial action over PVA/CS/thiolchitosan counterparts.;In the last part of the thesis, chitosan nanoparticles were prepared; for the first time in the literature instead of Tripolyphosphate (TPP), via ionic crosslinking with hexametaphosphate (HMP). A systematic study was conducted to apply the chitosan/HMP nanoparticles as a hydrophilic drug carrier for protein drugs. Chitosan/HMP systems were found to be unstable in the acidic medium. The optimum complexation conditions were established as pH 5 and the nanoparticles showed better stability at 21 days. Chitosan concentration plays an important role in improving particles stability by increasing zeta potential; however, it adversely affects the particles size. BSA loading capacity of chitosan/HMP was higher, 96.3%, than that of TPP, 91.87%, equivalents due to larger average size.
Keywords/Search Tags:Chitosan, Nanoparticles, Size, Nanofiber mats, Materials
Related items