Font Size: a A A

Mechanistic Insights into Alkane C-H Activation and Functionalization by Metal Oxide Surfaces and Organometallic Complexes

Posted on:2013-12-31Degree:Ph.DType:Thesis
University:California Institute of TechnologyCandidate:Cheng, Mu-JengFull Text:PDF
GTID:2451390008989101Subject:Organic Chemistry
Abstract/Summary:
In this thesis, we apply quantum mechanics to study the known alkane functionalization reactions to provide more insight into those catalytic processes, and we further utilize our computational results to design new reaction pathways for alkane functionalization. Each chapter presented herein constitutes an independent publication focusing on different aspects of the problem.;Chapter 1: Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V4O10 Cluster: In this paper, we examined the detailed mechanism for propane reacting with a V4O10 cluster to model the catalytic oxidative dehydrogenation (ODH) of propane on the V2O5(001) surface. We reported the mechanism of the complete catalytic cycle, including the regeneration of the reduced catalyst using gaseous O2, in which only a single vanadyl site is involved. This mechanism is applicable to propane ODH on the supported vanadium oxide catalysts where only monovanadate (O=V-(O)4-) species is present.;Chapter 2: The Magnetic and Electronic Structure of Vanadyl Pyrophosphate from Density Functional Theory: We have studied the magnetic structure of the high-symmetry vanadyl pyrophosphate, focusing on the spin exchange couplings, applying density functional theory with exact exchange and the full three-dimensional periodicity to this system for the first time. Based on the local density of states and the response of spin couplings to varying the cell parameter a, we found that two major types of spin exchange couplings originate from different mechanisms: one from a super-exchange interaction and the other from a direct exchange interaction.;Chapter 3: The Para -Substituent Effect and pH-Dependence of the Organometallic Baeyer-Villiger Oxidation of Rhenium-Carbon Bonds: Organometallic Baeyer-Villiger represents another means of oxidizing M-R to M-OR. In this work, we conducted a series of calculations with the goal of providing more insights into the reaction. We find that during this organometallic BV oxidation, the migrating phenyl plays the role of a nucleophile and the leaving group OH is nucleophile.;Chapter 4: Carbon-Oxygen Bond-Forming Mechanisms in Rhenium Oxo-Alkyl Complexes: Intramolecular 1,2-migration of hydrocarbyl across metal-oxo bonds is one of the few means of oxy-functionalizing M-R to M-OR bonds. This strategy works for R = Ph, but fails for R = Me and Et. In this work, we study these systems with the goal of understanding the reason. We find that when R = Me and Et the &;Chapter 5: A Homolytic Oxy-Functionalization Mechanism: Intermolecular Hydrocarbyl Migration from M-R to Vanadyl Oxo: In this work, we have examined C-O bond formation in the reaction of OVCl3 with Ph2Hg to generate phenol using quantum mechanics. Surprisingly, we find this reaction is through an unprecedented bimolecular, one-electron oxidation of the V-Ph bond by a second V=O moiety, not through the experimentally proposed intramolecular phenyl 1,2-migration across V=O bonds. Our calculations on the oxidation of Rh-CH3 and Ir-CH3 complexes by OVCl 3 further suggest that the possibility of integrating this new oxidation mechanism into alkane oxidation catalytic cycles. We also give guidelines to choose the systems in which this oxidation mechanism may play an important role. (Abstract shortened by UMI.).
Keywords/Search Tags:Alkane, Functionalization, Oxidation, Mechanism, Organometallic, Reaction
Related items