Font Size: a A A

Direct Functionalization of Heterocyclic and Non- Heterocyclic Arenes

Posted on:2012-10-07Degree:Ph.DType:Thesis
University:Universite de Montreal (Canada)Candidate:Mousseau, James JFull Text:PDF
GTID:2451390008998561Subject:Chemistry
Abstract/Summary:
The application of transition metals towards direct functionalization processes has exposed an opportunistic new class of carbon-carbon bond forming reactions. Given the undeniable ubiquity of C--H bonds, the possibility of introducing functionality through direct means with minimal preactivation is an irresistible strategy in synthesis. As such one can envision rapidly and efficiently building up complex scaffolds towards complex molecules of interest in a plethora of chemical fields.;There remains a significant challenge in developing direct processes utilizing inexpensive transition metals. Furthermore, the synthesis of pharmacologically relevant 2-alkenyl pyridines through direct transformations had not yet been reported. We focused on these challenges and developed a copper-catalyzed direct alkenylation of N-iminopyridinium ylides. A novel method to prepare the vinyl iodide coupling partners will also be discussed. The scopes of these reactions are quite large and remarkably chemoselective (Chapter 3). Through the optimization of this direct process we uncovered an unique means of synthesizing 2-substituted pyrazolo[1,5-a]pyridines (Chapter 4). The global process involved a tandem direct functionalization/cyclization sequence, and may be the first account of a direct process used in a cascade. This work also solves an important problem, as the synthesis of these substrates through alternate means is not straightforward.;The last two chapters will detail direct arylation technologies that do not involve heterocyclic coupling partners. Chapter 5 will highlight our uncovering of a palladium-catalyzed, directed, umpolung arylation of benzene and other arene derivatives. This was the first account of a direct functionalization whereby the directing group is situated on the pseudo electrophile. Also, it adds to the few examples of direct benzene arylation existing in the literature. Finally, a discussion of an atom economical, inexpensive, sustainable iron-catalyzed direct arylation process will be presented with special emphasis on substrate scope and mechanistic investigations (Chapter 6).;Keywords : N-Iminopyridinium ylides, direct arylation, alkenylation, catalysis, palladium, copper, iron, directing group.;The focus of this thesis is on the direct functionalization of heterocyclic and non-heterocyclic arenes, focusing on arylation technologies. First, the topic of direct arylation will be introduced, with special emphasis being on pyridines (Chapter 1). These molecules comprise the backbone of a myriad of biologically active compounds, and are also relevant in material sciences, agrochemicals, and natural products synthesis. This will be followed by a discussion of work on the palladium-catalyzed direct arylation of N-iminopyridinium ylides with accent on the derivatization of the pyridinium following the sp2 phenylation (Chapter 2). The exploration of this process led to the discovery of direct benzylic arylation when 2-alkyl N-iminopyridinium ylides are employed as reacting partners, in addition to palladium-catalyzed Tsuji-Trost allylations, and metal-free direct alkylation via phase transfer catalysis. All of these findings will be discussed in detail.
Keywords/Search Tags:Direct, Heterocyclic, Process, N-iminopyridinium ylides
Related items