Font Size: a A A

Detailed and reduced chemical-kinetic descriptions for hydrocarbon combustion

Posted on:2006-09-26Degree:Ph.DType:Thesis
University:University of California, San DiegoCandidate:Petrova, Maria VFull Text:PDF
GTID:2452390008959721Subject:Engineering
Abstract/Summary:
Numerical and theoretical studies of autoignition processes of fuels such as propane are in need of realistic simplified chemical-kinetic descriptions that retain the essential features of the detailed descriptions. These descriptions should be computationally feasible and cost-effective. Such descriptions are useful for investigating ignition processes that occur, for example, in homogeneous-charge compression-ignition engines, for studying the structures and dynamics of detonations and in fields such as multi-dimensional Computational Fluid Dynamics (CFD). Reduced chemistry has previously been developed successfully for a number of other hydrocarbon fuels, however, propane has not been considered in this manner.; This work focuses on the fuels of propane, as well propene, allene and propyne, for several reasons. The ignition properties of propane resemble those of other higher hydrocarbons but are different from those of the lower hydrocarbons (e.g. ethylene and acetylene). Propane, therefore, may be the smallest hydrocarbon that is representative of higher hydrocarbons in ignition and detonation processes. Since the overall activation energy and ignition times for propane are similar to those of other higher hydrocarbons, including liquid fuels that are suitable for many applications, propane has been used as a model fuel for several numerical and experimental studies. The reason for studying elementary chemistry of propene and C3H4 (allene or propyne) is that during the combustion process, propane breaks down to propene and C3H4 before proceeding to products. Similarly, propene combustion includes C3H4 chemistry. In studying propane combustion, it is therefore necessary to understand the underlying combustion chemistry of propene as well as C3H 4.; The first part of this thesis focuses on obtaining and testing a detailed chemical-kinetic description for autoignition of propane, propene and C 3H4, by comparing predictions obtained with this detailed mechanism against numerous experimental data available from shock-tube studies and flame-speed measurements. To keep the detailed mechanism small, attention is restricted to pressures below about 100 atm, temperatures above about 1000 K and equivalence ratios less than about 3. Based on this detailed chemistry description, short (or skeletal) mechanisms are then obtained for each of the three fuels by eliminating reactions that are unimportant for the autoignition process under conditions presented above. This was achieved by utilizing tools such as sensitivity and reaction pathway analyses.; Two distinct methodologies were then used in order to obtain a reduced mechanism for autoignition from the short mechanisms. A Systematic Reduction approach is first taken that involves introducing steady-state approximations to as many species as analytically possible. To avoid resorting to numerical methods, the analysis for obtaining ignition times for heptane, presented by Peters and co-workers is followed in order to obtain a rough estimate for an expression of propane ignition time. The results from this expression are then compared to the ignition times obtained computationally with the detailed mechanism.; The second method is an Empirical Approach in which chemistry is not derived formally, but rather postulated empirically on the basis of experimental, computational and theoretical observations. As a result, generalized reduced mechanisms are proposed for autoignition of propane, propene and C3H 4. Expressions for ignition times obtained via this empirical approach are compared to the computational results obtained from the detailed mechanism.
Keywords/Search Tags:Detailed, Ignition, Descriptions, Propane, Chemical-kinetic, Reduced, Combustion, Fuels
Related items