Breakup characteristics of a liquid jet in subsonic crossflow | Posted on:2013-12-03 | Degree:Ph.D | Type:Thesis | University:Georgia Institute of Technology | Candidate:Gopala, Yogish | Full Text:PDF | GTID:2452390008968346 | Subject:Engineering | Abstract/Summary: | PDF Full Text Request | This thesis describes an experimental investigation of the breakup processes involved in the formation of a spray created by a liquid jet injected into a gaseous crossflow. This work is motivated by the utilization of this method to inject fuel in combustors and afterburners of airplane engines. This study aims to develop a better understanding of the spray breakup processes and to provide better experimental inputs to improve the fidelity of numerical models.;A review of the literature in this field identified the fundamental physical processes involved in the breakup of the spray and the dependence of spray properties on operating conditions. The time taken for the liquid column to break up into ligaments and droplets, the primary breakup time and the effect of injector geometry on the spray formation processes and spray properties as the key research areas in which research done so far has been inadequate.;Determination of the location where the liquid column broke up was made difficult by the presence of a large number of droplets surrounding it. This study utilizes the liquid jet light guiding technique that enables accurate measurements of this location for a wide range of operating conditions. Prior to this study, the primary breakup time was thought to be a function the density ratio of the liquid and the gas, the diameter of the orifice and the air velocity. This study found that the time to breakup of the liquid column depends on the Reynolds number of the liquid jet. This suggests that the breakup of a turbulent liquid jet is influenced by both the aerodynamic breakup processes and the turbulent breakup processes. Observations of the phenomenon of the liquid jet splitting up into two or more jets were made at some operating conditions with the aid of the new visualization technique.;Finally, this thesis investigates the effect of injector geometry on spray characteristics. One injector was a round edged orifice with a length to diameter ratio of 1 and a discharge coefficient of 0.95 at the operating conditions of interest. The other injector was a sharp edged orifice with a length to diameter ratio of 10 and a discharge coefficient of 0.74 at the operating conditions of interest. It was shown that the sharp edged orifice was likely to develop cavitation bubbles beyond a flow Reynolds number of 8,000. It was found that a sharp transition in the injector can lead to the liquid column disintegrating sooner. The classical Rayleigh Taylor instabilities that are usually seen with a smooth transition in the injector were not seen in the presence of a sharp transition. The droplets produced with such an injector are larger in size and the spray penetrated deeper into the crossflow. | Keywords/Search Tags: | Breakup, Liquid jet, Spray, Injector, Operating conditions | PDF Full Text Request | Related items |
| |
|